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École doctorale 072 : Sciences Pour l’Ingénieur

THÈSE

pour obtenir le grade de docteur délivré par
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Introduction

Summary

The main goal of this thesis was to give a new proof of, and enhance, a theorem
by Nakaoka, in [20], comparing global Mackey functors and biset functors. (See
respectively [27] and [6].) This brought us to prove a new abstract monadicity
theorem for functor categories, and to prove the existence, and study a number of
properties, of a pseudofunctor R from the bicategory of spans in finite groupoids
to the bicategory of finite bimodules between finite groupoids.

Let us fix a base commutative ring k, which typically is Z or a field. By
tensor category we will always mean a symmetric monoidal category with unit
object 1. By tensor functor we mean a strong symmetric monoidal functor.

Main Theorem 1 (Tensor monadicity for functor categories; see 1.3.13). Let
F : C → D be a k-linear tensor functor between two small k-linear tensor cate-
gories. By standard constructions, we obtain the following diagram

VC

LanF

~~ Free %%
VD

E
//

F∗

>>

A−ModVC

U

ee

where V := k −Mod is the category of k-modules and VC and VD denote the
categories of k-linear functors equipped with the Day convolution tensor product;
where A is the commutative monoid F ∗(1) in VC and A−ModVC its category of
modules; and where E is the Eilenberg-Moore comparison functor between the
precomposition–left Kan extension adjunction (LanF , F

∗) and the free module–
forgetful adjunction (Free, U). If F is full and essentially surjective and C (and
therefore also D) is rigid, then E is an equivalence of tensor categories.

The monoid structure on A = F ∗(1) comes from the lax structure of the
right adjoint F ∗, and – since F is full and essentially surjective – the theorem
identifies its module category with VD as full subcategories of VC.

The primordial example of this is the case where F is a surjective homo-
morphism f : R → S of commutative k-algebras, in which case the theorem
identifies the tensor category of S-modules (in the usual sense) with the tensor
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category of RS-modules inside the category R−Mod, that is: those R-modules
whose action factors through S.

Another example is the following one, which had previously been studied
by Yoshida [28] and Panchadcharam-Street [22]. (This one is far less obvious:
Webb [27] calls it “perhaps the most striking result about cohomological Mackey
functors”). We can directly obtain their results from our abstract theorem above
by taking F to be the full tensor functor GX 7→ k[X] comparing k-linear spans
of G-sets with permutation kG-modules:

Corollary 1 (Cohomological vs ordinary Mackey functors; see 2.2.17). For
every finite group G, there is an equivalence of tensor categories between:

• The category of modules over the fixed-point Green functor FPk;

• Representations of the category of permutation kG-modules.

Moreover, both categories identify canonically with the full subcategory of ordi-
nary Mackey functors for G satisfying the ‘cohomological axiom’ (L ≤ H ≤ G):

indHL ◦ resHL = [H : L] · Id.

For our second main result, consider the 2-category G of finite groupoids,
functors and natural transformations. There are two well-known ways to ‘sym-
metrize’ G, using spans (a.k.a. correspondences) or bimodules (a.k.a. bisets or
profunctors). They give rise, respectively, to the bicategories S and B. Our
result is the following precise comparison of these two bicategories (a similar
construction was considered by Hoffnung, see Claim 13 in [13], but without
giving any proofs).

Main Theorem 2 (Comparison of spans and bimodules; see § 4.2 and 4.3).
There exists a pseudo-functor R : S → B which is the identity on objects (that

is, finite groupoids), and realizes a span Y
b← S

a→ X as the coend

b∗ ⊗ a∗ :=

∫ s∈S
Y (bs,−)×X(−, as).

It enjoys several properties. In particular, after 1-truncation τ1 (identify iso-
morphic 1-cells) and k-linearization, it induces a functor

F := kτ1R : C = kτ1S −→ kτ1B = D

satisfying the hypotheses of the Main Theorem 1.

As our second application, we achieve the goal that was initially set as a
corollary: indeed, we can now directly apply the Main Theorem 1 to the functor
F of the Main Theorem 2 to obtain the following result, most of which (safe the
monoidal part) has already appeared in work of Nakaoka [20] [21], with very
different proofs:
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Corollary 2 (Biset functors vs global Mackey functors; see 4.4.6). There is an
equivalence of tensor categories between:

• The category of modules over a certain global Green functor (see [21]);

• The category of biset functors F of Bouc [6], that is, representations of
the category of bisets.

Moreover, both categories identify canonically with the reflexive full subcategory
of global Mackey functors satisfying the ‘deflation axiom’ (N EG):

defGG/N ◦ infGG/N = Id.

Other than our first Main Theorem, this second application uses the identifi-
cation of Bouc’s category F of biset functors with the category of representations
of bimodules between groupoids; this is easily seen because τ1B is the additive
completion of the category of bisets between finite groups. Indeed, a biset is the
same thing as a bimodule between groups, and every groupoid is isomorphic in
τ1B to a direct sum of groups. (See Section 4.4 for details.)

Conventions

In order to be as light as possible when it comes to diagrams, polygon diagrams
will be commutative by default. For the same purpose, not every arrow will
have a label: arrows with no label are either the obvious arrow, i.e. the only
arrow with such source and target that has been defined, or the arrow defined
by the commutativity of the diagram. Always in a wish for readability, we will
often omit subscripts when ambiguity is improbable due to context.



Chapter 1

Functorial precomposition

In this chapter we present all the constructions necessary to understand the first
Main Theorem of the Introduction, then we prove it.

1.1 Tensor categories

In this section, we recall the basic notions of monoidal category theory that will
be useful in this work.

Definition 1.1.1. A symmetric monoidal category with unit, or simply tensor
category, is a category C equipped with:

1. a functor −⊗C − : C× C→ C, called the tensor,

2. an object 1C ∈ C, called tensor unit,

3. a natural isomorphism called associator aC (for x, y, z ∈ C):

aC,(x,y,z) : (x⊗ y)⊗ z → x⊗ (y ⊗ z)

4. a natural isomorphism lunC, called left unitor (x ∈ C):

lunC,x : 1C ⊗ x→ x

5. a natural isomorphism runC, called right unitor (x ∈ C):

runC,x : x⊗ 1C → x

6. a natural transformation σC, called symmetry,

σC,(x,y) : x⊗C y → y ⊗C x

such that
σC,(x,y) ◦ σC,(y,x) = Idx⊗Cy

for any two objects in C.

5



CHAPTER 1. FUNCTORIAL PRECOMPOSITION 6

(When there will be no risk of misunderstanding, the subscript will be omitted
and we will simply write ⊗, a, 1, etc.)

This data is subject to the following coherence conditions, called triangle
and pentagon identities: for any objects x, y in C,

(x⊗ 1)⊗ y

runx⊗Idy &&

ax,1,y // x⊗ (1⊗ y)

Idx⊗lunyxx
x⊗ y

and for any objects s, t, u, v in C,

(s⊗ t)⊗ (u⊗ v)
a(s,t,u⊗v)

))
((s⊗ t)⊗ u)⊗ v

a(s,t,u)⊗Id

��

a(s⊗t,u,v)
55

s⊗ (t⊗ (u⊗ v))

(s⊗ (t⊗ u))⊗ v
a(s,t⊗u,v) // s⊗ ((t⊗ u)⊗ v)

Id⊗a(t,u,v)

OO

The following compatibility between the symmetry and the associator and uni-
tors is also required:

(x⊗ y)⊗ z
a(x,y,z)//

σ(x,y)⊗Id

��

x⊗ (y ⊗ z)
σ(x,y⊗z)// (y ⊗ z)⊗ x

a(y,z,x)

��
(y ⊗ x)⊗ z

a(y,x,z)// y ⊗ (x⊗ z)
Id⊗σ(x,z)// y ⊗ (z ⊗ x)

x⊗ 1

runx
""

σx,1 // 1⊗ x

lunx||
x

(it can actually be shown that the second axiom follows from all the others, see
[15] Proposition 2.1).

The tensor category is said to be strict if the associator, left and right unitors
(but not necessarily the symmetry!) are identities.

Throughout this section and this chapter, C will be a tensor category.

Definition 1.1.2. Let (C,⊗C, 1C) and (D,⊗D, 1D) be two tensor categories. A
lax monoidal functor between them is given by:

1. a functor F : C→ D,

2. a morphism laxF1 : 1D → F (1C),
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3. a natural transformation laxFx,y : F (x)⊗DF (y)→ F (x⊗Cy) (for x, y ∈ C).
This data must satisfy the following associativity and unitality axioms:

(F (x)⊗ F (y))⊗ F (z)
aD //

laxFx,y⊗Id

��

F (x)⊗ (F (y)⊗ F (z))

Id⊗laxFy,z
��

F (x⊗ y)⊗ F (z)

laxFx⊗y,z
��

F (x)⊗ F (y ⊗ z)

laxFx,y⊗z
��

F ((x⊗ y)⊗ z)
F (aC) // F (x⊗ (y ⊗ z))

1⊗ F (x)
laxF1 ⊗Id//

lunD,F (x)

��

F (1)⊗ F (x)

laxF1,x
��

F (x)⊗ 1
Id⊗laxF1//

runD,F (x)

��

F (x)⊗ F (1)

laxFx,1
��

F (x) F (1⊗ x)
F (lunC,x)oo F (x) F (x⊗ 1)

F (runC,x)oo

It is a symmetric lax monoidal functor if the following holds:

F (x)⊗ F (y)
σFx,Fy//

laxx,y

��

F (y)⊗ F (x)

laxy,x

��
F (x⊗ y)

F (σx,y) // F (y ⊗ x)

It is a strong monoidal functor if both the morphisms laxF1 and laxFx,y are iso-
morphisms (in which case we will also write ‘strg’ instead of ‘lax’).

By tensor functor we will mean a strong symmetric monoidal functor. By a
lax tensor functor we mean a symmetric lax monoidal functor.

A tensor equivalence is a strong tensor functor whose underlying functor F
is an equivalence of categories. In this case, one can check that any pseudo-
inverse F−1 is also a strong tensor functor.

Theorem 1.1.3. Every tensor category is tensor equivalent to a strict tensor
category.

Proof. A proof and an explanation can be found in [19] VII. First one shows,
forgetting the symmetry, that the given monoidal category is monoidal equiv-
alent to a strict one (where associators and unitors are identities). Then one
shows that the symmetry can be transferred along this equivalence.

Remark 1.1.4. A consequence of the coherence theorem for monoidal cate-
gories is that the abusive bracket-free notations, such as x⊗y⊗z, in a monoidal
category that is not associative “on the nose” for instance, can be used without
causing real damages: any two ways of re-introducing associators and unitors to
make things precise will yield the same morphisms, and so there is no real am-
biguity when using such short-hand notations. We will commit such notational
abuses in this work.
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Proposition 1.1.5. The right adjoint to a strong tensor functor is a lax tensor
functor.

Proof. Let F : C→ D be a strong tensor functor, and let G be its right adjoint.
We denote η and ε the unit and counit of this adjunction. We define the following
morphisms:

laxG1 := G(strgF1 )−1 ◦ η1 : 1C → G(1D),

laxGy1,y2 := G(εy1 ⊗ εy2) ◦G(strgF−1
G(y1),G(y2)) ◦ ηG(y1)⊗G(y2),

G(y1)⊗G(y2)→ G ◦ F (G(y1)⊗G(y2))→ G(FG(y1)⊗ FG(y2))→ G(y1 ⊗ y2).

It is lenghty but straightforward 1 to check that these morphisms give a tensor
structure to G.

Definition 1.1.6. A tensor category C is rigid if every object x ∈ C has a dual
object x∨ together with morphisms ηx : 1→ x⊗ x∨ and εx : x∨ ⊗ x→ 1, such
that

runx ◦ (Idx ⊗ εx) ◦ ax,x∨,x ◦ (ηx ⊗ Idx) ◦ lun−1
x = Idx,

and
lunx∨ ◦ (εx ⊗ Idx∨) ◦ a−1

x∨,x,x∨ ◦ (Idx∨ ⊗ ηx) ◦ run−1
x∨ = Idx∨ .

Definition 1.1.7. A tensor category C is closed if for any object x of C, the
functor − ⊗ x : C → C has a right adjoint, usually denoted [x,−] and called
internal hom.

Remark 1.1.8. A rigid category C is closed, with internal hom given by
[x,−] := x∨ ⊗−. In particular, we have the adjunction isomorphism

C(y ⊗ x, z) ' C(y, x∨ ⊗ z),

which sends y ⊗ x f−→ z to y ' y ⊗ 1
Id⊗ηx−−−−→ y ⊗ x⊗ x∨ f⊗Id−−−→ z ⊗ x∨ σ−→ x∨ ⊗ z.

Definition 1.1.9. A monoid in C is an object R together with morphisms
mR : R⊗R→ R (multiplication) and uR : 1→ R (unit) such that the associative
law, the left unit law and the right unit law all hold:

R⊗ (R⊗R)

a

��

Id⊗m // R⊗R
m

""
(R⊗R)⊗R

m⊗Id
// R⊗R

m
// R

1⊗R uR⊗Id //

lunR ""

R⊗R

mR
||

R⊗ 1
Id⊗uR //

runR
""

R⊗R

mR
||

R R

Furthermore, a monoid R in C is said to be commutative if mR ◦σR,R = mR.
1Details can be found at https://ncatlab.org/nlab/show/monoidal+adjunction.
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Proposition 1.1.10. If F : C → D is a (strong) tensor functor that is essen-
tially surjective, and if C is rigid, then D is also rigid.

Proof. We denote by η and ε the rigidity unit and counit in C.
Let F (x)∨ := F (x∨). We can now construct a unit and a counit for this

object, using the structure morphims of F :

ηD,F (x) :=
(

1D ' F (1)
F (η)−−−→ F (x⊗ x∨) ' F (x)⊗ F (x)∨

)
and

εD,F (x) :=
(
F (x)∨ ⊗ F (x) ' F (x∨ ⊗ x)

F (ε)−−−→ F (1) ' 1
)
.

We need to check the commutativity of

F (x)

lun−1

��

F (x)

1D ⊗ F (x)
ηD⊗Id // (F (x)⊗ F (x)∨)⊗ F (x)

aD // F (x)⊗ (F (x)∨ ⊗ F (x)),

run◦(Id⊗εD)

OO

i.e. that of the outer rectangle of the following diagram:

F (x)

lun−1
D
��

F (lun−1)

$$

F (x) F (x)⊗ 1Drun
oo

1D ⊗ F (x)

strgF1 ⊗Id

��

F (1⊗ x)

strg−1
zz

ϕ
// F (x⊗ 1)

F (run)

ff

F (x)⊗ F (1)

Id⊗strg−1
1

OO

strg
oo

F (1)⊗ F (x)

F (η)⊗Id

��

F (x)⊗ F (x∨ ⊗ x)

Id⊗F (ε)

OO

F (x⊗ x∨)⊗ F (x)
strg−1⊗Id

// (F (x)⊗ F (x∨))⊗ F (x)
aD
// F (x)⊗ (F (x∨)⊗ F (x)).

(Id⊗strg)

OO

To show the commutativity of the outer rectangle, it suffices to show that of
the four inner polygons, where ϕ is defined in the next diagram. The right and
left polygons commute thanks to the unitary axioms of lax monoidal functors
(1.1.2) applied to the strong monoidal case. If we apply F to the first axiom of a
dual object (1.1.6), we see that the top polygon also commutes. The remaining
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octagon is equal to the perimeter of the next diagram:

F (1⊗ x)
strg−1

//

F (η⊗Id)

��

ϕ :=

''

F (1)⊗ F (x)
F (η)⊗Id // F (x⊗ x∨)⊗ F (x)

strg−1⊗Id

��
F ((x⊗ x∨)⊗ x))

strg−1

x⊗x∨,x

22

F (aC)

��

(F (x)⊗ F (x∨))⊗ F (x)

aD

��
F (x⊗ (x∨ ⊗ x))

(Id⊗strg−1

x∨,x)◦strg−1

x,x∨⊗x //

F (Id⊗ε)
��

F (x)⊗ (F (x∨)⊗ F (x))

Id⊗strg

��
F (x⊗ 1) F (x⊗ 1)

strg
oo F (x)⊗ F (x∨ ⊗ x)

Id⊗F (ε)
oo

By the hexagonal axiom in 1.1.2, the trapezoid in the middle is commutative.
The triangle at the top and the rectangle at the bottom are commutative by
naturality of strg.

The proof that the second rigidity axiom holds is similar and is left to the
reader.

Since F is essentially surjective, every object y ∈ D is isomorphic to one of
the form F (x), and the dual constructed above for F (x) yields a dual for y via
any chosen isomorphism. Hence, D is rigid.

Definition 1.1.11. If R = (R,mR, uR) is a monoid in C, a (left) R-module
M = (M,λM ) in C is an object M equipped with an action morphism λM :
R⊗M →M such that the expected associativity and unitality axioms hold:

R⊗ (R⊗M)
Id⊗λM //

OO
aC

R⊗M

λM

��
(R⊗R)⊗M

m⊗Id
// R⊗M

λM

// M

1⊗M uR⊗Id // R⊗M

λM

��
M
��

lunM

M.

Proposition 1.1.12. A lax monoidal functor sends monoid objects to monoid
objects. If the functor is symmetric, it sends commutative monoids to commu-
tative monoids. Furthermore, the image of a module over a monoid is a module
over the image of the monoid.

Proof. Let F : C → D be a lax monoidal functor, R be a monoid in C and M
be a R-module in C. Let’s define three morphisms:

mF (R) := F (mR) ◦ laxFR,R,

uF (R) := F (uR) ◦ laxF1 ,

λF (M) := F (λM ) ◦ laxFR,M .
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It follows easily from the axioms of 1.1.2 that (F (R),mF (R), uF (R)) is a monoid
and (F (M), λF (M)) is an F (R)-module in D. If R is commutative and F is
symmetric, it follows immediatly from the definition that F (R) is commutative
as well.

See again [19] VII for more details.

Proposition 1.1.13. 1C is a commutative monoid in C, the multiplication
morphism being given by lun1C = run1C and the unit morphism by the identity
of 1C. Any object x of C is a 1C-module with action also given by the left
unitor lunx. Furthermore, these monoid and module structure are unique up to
a canonical isomorphism.

Proof. The fact that (1C, lun1, Id1) is a commutative monoid is easy to check
thanks to the coherence theorem. The same is true of the 1C-module structure
of (x, lunx) for that monoid structure on 1C.

The uniqueness of those structures is quite the exercise. It uses the coher-
ence theorem, as well as the fact that the monoid for composition EndC(1C) is
commutative.

Proposition 1.1.14. If C and D are tensor categories and F : C → D is
a symmetric lax monoidal functor, then F (1) is a commutative monoid object
inside D, and the images of objects of C by F are F (1)-modules.

Proof. This is immediate from 1.1.13 and 1.1.12.

Definition 1.1.15. Let R be a monoid object in C. We denote by R−ModC the
category of R-modules in C, and morphisms in C between them that commute
with actions.

Proposition 1.1.16. If C has enough colimits (coequalizers suffice), if for any
object X of C the functor −⊗X preserves coequalizers and if the monoid R is
commutative, the category R−ModC is a symmetric monoidal category.

Proof. This are all standard constructions, which we now partly recall.
The monoidal product in R −ModC, denoted by −⊗R −, is defined by the

following coequalizer in C

M ⊗R⊗M ′
(λ⊗Id)◦(σ⊗Id)

//
Id⊗λ′ // M ⊗M

pM,M′ // M ⊗RM ′ (1.1)

where λ : R⊗M →M and λ′ : R⊗M ′ →M ′ are the given actions.
As a monoid object, R is an R-module, and from its module structure

emerges the unitary structure of the category.
The symmetry σR is the collection of arrows induced by the graph below via

universal property

M ⊗R⊗M ′

(σ⊗Id)◦σ
��

//// M ⊗M ′

σ

��

// M ⊗RM ′

!

��
M ′ ⊗R⊗M //// M ′ ⊗M // M ′ ⊗RM.
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Using the universal property of coequalizers, one can construct associativity
(for which the second condition stated in the proposition is needed) and unit
morphisms in a straightforward way, and check that the axioms hold because
they hold for the symmetric monoidal category C.

The following lemma will be useful in Section 1.4:

Lemma 1.1.17. Let (M,λ) be a left module over a monoid (A,mA, uA) in a
monoidal category C. Then the following diagram is a coequalizer in C:

A⊗A⊗M
m⊗Id

//
Id⊗λ // A⊗M

λ
// M

Proof. One can check that the Universal Property of coequalizers holds: let
α : A⊗M → T be such that α ◦ (IdA ⊗ λ) = α ◦ (mA ⊗ IdM ).

We must show that there is a unique β : M → T such that β ◦ λ = α.
The uniqueness follows from the fact that λ is a split epimorphism, as implied

by the unit axiom λ ◦ (uA ⊗ IdM ) ◦ lun−1
M = IdM . The existence is obtained as

follows: let β := α ◦ (uA ⊗ IdM ) ◦ lun−1
M , then the following diagram shows that

β ◦ λ = α:

A⊗M

α

��

A⊗MIdoo

λ

��

A⊗A⊗M

Id⊗λ
��

mA⊗Id
ff

1⊗A⊗M
u⊗λ

ww

uA⊗Idoo

Id⊗λ
��

lun

88

A⊗M

α

ww

1⊗MuA⊗Idoo

lun
&&

T M.
β

oo

Commutativity of the trapezoids: the left one commutes by the property of
α, the right one commutes by naturality of the left unitor, the bottom one
commutes by definition of β and the top one is the unit axiom for the monoid
A. The middle square commutes by functoriality of −⊗−.

Proposition 1.1.18. Let R be a monoid object in C. There is a faithful functor
U : R −ModC → C that sends (M,ρM ) to M and any morphism to “itself”.
We call this functor the forgetful functor.

Proof. See [19] VII 4.

Proposition 1.1.19. Let R be a monoid object in C. There is a functor Free :
C −→ R − ModC that sends M to (R ⊗ M, (mR ⊗ IdM ) ◦ a−1

R,R,M ) and any
morphism α : M → N to IdR ⊗ α. It is left adjoint to the forgetful functor U .

Proof. See [19] VII 4.
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1.2 Day convolution

In this section, and in the next one, we cite G.M. Kelly’s [16]. However, Kelly’s
work is much more general than what we need here, namely results of the theory
of categories enriched over k-modules. We try to give explicit definitions and
simple, specific proofs of our statement, but sometimes we will refer to that
greater generality.

Definition 1.2.1. Let k be a commutative ring. We set V := k −Mod, the
category of k-modules and k-linear maps.

We recall the following well known fact:

Proposition 1.2.2. When equipped with the tensor product ⊗k and the internal
Hom Homk(−,−), V becomes a symmetric closed monoidal category which is
both complete and cocomplete.

Definition 1.2.3. A category C is k-linear, or V-enriched, if for any two objects
x, y, the hom-set C(x, y) is an object in V (a k-module) and if there are compo-
sition maps c : C(y, z)⊗kC(x, y)→ C(x, z) and identity maps Idx : k→ C(x, x)
in V (k-homomorphisms) such that the associativity condition holds

(C(z, t)⊗k C(y, z))⊗k C(x, y)
aV
∼=

//

c⊗k Id

��

C(z, t)⊗k (C(y, z)⊗k C(x, y))

Id⊗k c

��
C(y, t)⊗k C(x, y)

c
))

C(z, t)⊗k C(x, z)

c
uu

C(x, t)

and identities are left/right neutral elements for composition.
A tensor (that is, symmetric monoidal) structure on a k-category is k-linear

if its tensor functor −⊗− is a k-linear functor of each variable (see Definition
1.2.7 below).

Definition 1.2.4. A category C is said to be semi-additive if there is

• a zero object 0 ∈ Ob(C), that is an object which is both initial and final
in C,

• a commutative monoid structure + : C(X,Y ) × C(X,Y ) → C(X,Y ) on

every hom-set, with neutral element 0XY = X
!−→ 0

!−→ Y , such that
composition is bilinear with respect to that structure,

• binary biproducts that is, for every two objects X and Y , there is an object
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X tY and four morphisms that make the following diagram commutative

X
iX

##

Y
iY

{{
X t Y

pY
##

pX
{{

X Y,

and such that pY ◦iX = 0XY , pX◦iY = 0Y X , and iX◦pX+iY ◦pY = IdXtY .

Proposition 1.2.5. Given a semi-additive category C, one obtains a V-category
kC by considering the category with the same objects Ob(C) and where

kC(X,Y ) := k⊗Z Gr
(
C(X,Y )

)
is the extension of scalars from Z to k of Grothendieck’s group completion
Gr
(
C(X,Y ) of the commutative monoid (C(X,Y ),+), and composition is ex-

tended k-linearily.

Proof. This is well-known and straightforward.

Proposition 1.2.6. Given two semi-additive categories C and D, and given
a functor F : C → D that respects sums of morphisms (and therefore also
biproducts of objects), there is a unique way to extend F to kC → kD with
respect to the k-linearization process described above.

Proof. This is well-known and straightforward.

Definition 1.2.7. A functor F : C → D between two V-enriched categories
is k-linear, or a V-enriched functor, or V-functor, if it is compatible with the
linear structure, meaning that each map F : C(x, y)→ D(Fx, Fy) is k-linear.

Remark 1.2.8. In enriched category theory over a general base category V,
there is a notion of V-natural transformation, but in our context, with V =
k − Mod, it is easy to check that ordinary natural transformations between
V-functors are always compatible with the extra structure in the required sense.

Proposition 1.2.9. For every (essentially small) V-category C, the collection
of all V-functors C→ V and all natural transformations between them forms a
complete and co-complete V-category, which we denote by VC.

Proof. It is a straightforward verification that VC forms a V-category. It inherits
its properties from the completeness and co-completeness of V, since one can
always construct limits and colimits pointwise.

In the following, we will use the convenient notation of (k-linear) coends:
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Definition 1.2.10. Let H : Cop × C → V be a functor which is k-linear in
both variables, with C any (essentially) small k-category. Then its (V-enriched)

coend is an object
∫ c∈C

H ∈ V defined by the following formula

∫ u∈C
H :=

 ⊕
u∈Ob(C)

H(u, u)

 /T,

where T is the k-submodule of the coproduct generated by the elements x− x′,
where x ∈ H(u, u) and x′ ∈ H(u′, u′) such that there exists an f ∈ C(u, u′) and
y ∈ H(u′, u) such that H(f, Idu)(y) = x and H(Idu′ , f)(y) = x′. By construc-

tion, the coend comes equipped with a canonical map H(v, v) →
∫ u∈C

H for
every v ∈ C.

Below, we give two lemmas that will be useful for coend calculations, which
appear a lot in this work. The next ‘Fubini lemma’ is one good reason to use
the integral notation:

Lemma 1.2.11. Let C1 and C2 be two V-categories. If

H : (C1 × C2)op × (C1 × C2)→ V

is a V-functor, then its (enriched) coend can be computed one variable at a time,
that is there is a canonical isomorphism∫ c1,c2∈C1×C2

H '
∫ c1∈C1

∫ c2∈C2

H,

given by the obvious map [x] 7→ [x] (x ∈ H(c1, c2, c1, c2)) which is the identity
on representatives.

Proof. The reader can find more details and a proof in chapter 8 of [19], for
the non-enriched version of the result. The same proof works in the k-linear (or
more general enriched) context, see also [24].

The next lemma is known as ‘co-Yoneda’:

Lemma 1.2.12. For every functor M : C → V, there is a canonical isomor-
phism of functors: ∫ x∈C

C(x,−)⊗V M(x) 'M

[f : x→ c, ζ ∈M(x)] 7→M(f)(ζ) ∈M(c)

Here, the left-hand side notation denotes the functor sending c ∈ C to the coend∫ x∈C C(x, c)⊗V M(x) as in 1.2.10, with the obvious induced functoriality.

Proof. See example 1.2.4 in [24].

Coends can also be used to compute left Kan extensions. Recall that (k-
linear) left Kan extensions are defined as follows.
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Definition 1.2.13. Given two V-functors T : A → E and K : A → B, the left
Kan extension of T along K is a V-functor LanKT : B → E, together with a
natural transformation η as in the following diagram

A T //

K ��
η

��

E

B
LanKT

??

having the following universal property: for every k-linear L : B→ E, the map

EB(LanKT, L)
∼→ EA(T, L ◦K) (1.2)

sending β to (β ∗ K) ◦ η is an isomorphism. (Note that β ∗ K denotes the
whiskering of the natural transformation β by the functor K. See Remark
3.0.2.)

Proposition 1.2.14. When E is co-complete and both A and B are essentially
small, the left Kan extension defined above is given by the following coend:

(LanKT )(b) =

∫ a∈A
B(Ka, b)⊗k T (a) (1.3)

for b ∈ B.

Proof. See [19, X.4]. See also [24, §1.2 and §7.6] for the easy adaptations to the
k-linear case.

Let us return to the main topic of this section: coends also allow us to define
a tensor product on the functor category VC, as follows.

Definition 1.2.15 (Day convolution). For any two functors M,N ∈ VC, we
define their Day convolution product (see [9]) as the following functor C→ V:

M �C N :=

∫ u,v∈C
C(u⊗ v,−)⊗k M(u)⊗k N(v)

Unpacking Definition 1.2.10, for each c ∈ C this functor is computed as the
following quotient of k-modules

∫ u,v∈C
C(u⊗v, c)⊗kM(u)⊗kN(v) =

⊕
u,v∈C

C(u⊗ v, c)⊗k M(u)⊗k N(v)

 /T

where T is the sub-k-module generated by the elements

f ⊗ x⊗ y − f ′ ⊗ x′ ⊗ y′
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(with f ∈ C(u ⊗ v, c), x ∈ M(u), y ∈ M(v), f ′ ∈ C(u′ ⊗ v′, c), x′ ∈ M(u′) and
y′ ∈M(v′)) whenever there exist a ∈ C(u, u′) and b ∈ C(v, v′) such that:

u⊗ v

a⊗b

��

f

''

; M(a)(x) = x′

c

u′ ⊗ v′
f ′

77

; N(b)(y) = y′

(1.4)

We will write [f, x, y] for the equivalence class of f ⊗ x⊗ y in the quotient, and
we will call basic relation an equality [f, x, y] = [f ′, x′, y′] witnessed by a and b
as in (1.4).

The functoriality of M�CN is induced in the evident way: given g ∈ C(c, c′),
the map (M �C N)(c)→ (M �C N)(c′) is given by [f, x, y] 7→ [g ◦ f, x, y].

Proposition 1.2.16. Day convolution equips VC with a k-linear closed tensor
structure, given by:

1. The functor −�C − : VC × VC → VC given on objects by

(M,N) 7→M �C N :=

∫ u,v∈C
C(u⊗ v,−)⊗k M(u)⊗k N(v)

and on morphisms (that is, pairs of natural transformations α : M →M ′

and β : N → N ′) by

(α, β) 7→
{

[f ∈ C(u⊗ v, c), x, y] 7→ [f, αu(x), βv(y)]
}
c∈C .

2. The tensor unit 1Day := C(1C,−).

3. The associator aC, obtained by using the Fubini Lemma 1.2.11:

aC,(L,M,N) : (L�C M)�C N → L�C (M �C N)

with, at c ∈ C,

((L�CM)�CN)(c) =

∫ u,r,s,t

C(u⊗t, c)⊗kC(r⊗s, u)⊗kL(r)⊗kM(s)⊗kN(t)

(L�C(M�CN))(c) =

∫ o,v,p,q

C(o⊗v, c)⊗kC(p⊗q, v)⊗kL(o)⊗kM(p)⊗kN(q)

aC,c : [f, g, x, y, z]→ [f ◦ (g ⊗ Idt), Idv, x, y, z]

at o = r, p = s, q = t and v = s⊗ t.

4. The left unitor lunC, given at M and c by

(C(1C,−)�C M)(c) =

∫ u,v

C(u⊗ v, c)⊗k C(1, u)⊗k M(v)

−→
∫ v

C(v, c)⊗k M(v)
1.2.12' M(c)
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[
u⊗ v f−→ c, 1

g−→ u, x
]
7→

v ∼−→ 1⊗ v g⊗Id−−−→ u⊗ v f−→ c︸ ︷︷ ︸
=:h

, x

 7→M(h)(x) .

5. The right unitor runC : M �C C(1C,−) → M (at M) is given by the
analogous formula, using the right unitor of C instead of the left one.

6. The symmetry isomorphism sM,N : M �C N ' N �C M is the map

[f, x, y] 7→ [f ◦ σ, y, x]

induced by the symmetries of C and V.

7. The internal Hom is given by the following end:

[M,N ]Day(c) :=

∫
c1,c2∈C

V
(
C(c⊗ c1, c2), V(M(c1), N(c2))

)
Proof. See the original work of Day [9] for these results (in a somewhat old-
fashioned terminology), or also the explanations of the nCat lab:

https://ncatlab.org/nlab/show/Day+convolution.
One can also verify this directly from the above formulas.

Proposition 1.2.17. The Yoneda embedding yC : Cop → VC, c 7→ C(c,−) is a
k-linear strong tensor functor.

Proof. This can also be found on the nCat lab, as proposition 3.3 of:
https://ncatlab.org/nlab/show/Day+convolution.
Concretely, the map strgy1 is simply the identity, and for c1, c2 ∈ C the map

strgyc1,c2 is given by∫ u,v∈C
C(u⊗ v, c)⊗k C(c1, u)⊗k C(c2, v) −→ C(c1 ⊗ c2, c)

[f, g, h] 7→ f ◦ (g ⊗ h)

at each c ∈ C.

The following lemma is of crucial importance for the computations in later
sections:

Lemma 1.2.18. If C is moreover rigid, then we have the formulas:

M �N '
∫ v∈C

M(v∨ ⊗−)⊗k N(v)

[f, x, y] 7→ [M(f̃)(x), y]

and

M �N '
∫ u∈C

M(u)⊗k N(u∨ ⊗−)

[f, x, y] 7→ [x,N(f̄)(y)]

https://ncatlab.org/nlab/show/Day+convolution
https://ncatlab.org/nlab/show/Day+convolution
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for all M,N ∈ VC, where f̃ and f̄ are the evident composites, as follows:

f̃ := σc,v∨ ◦ (f ⊗ Idv∨) ◦ (Idu ⊗ ηv) ◦ run−1
u

f̄ := (Idu∨ ⊗ f) ◦ (σ ⊗ Idv) ◦ (ηu ⊗ Idv) ◦ lun−1
v

Proof. The two formulas having similar proofs, and since only the first one will
be of use in this work, we only prove the first one. For any object c in C, we
have:

(M �N)(c) =

∫ u,v∈C
C(u⊗ v, c)⊗k M(u)⊗k N(v)

'
∫ u,v∈C

C(u, v∨ ⊗ c)⊗k M(u)⊗k N(v) by 1.1.8

'
∫ v∈C ∫ u∈C

C(u, v∨ ⊗ c)⊗k M(u)⊗k N(v) by 1.2.11

'
∫ v∈C

N(v)⊗k

∫ u∈C
C(u, v∨ ⊗ c)⊗k M(u) see below

'
∫ v∈C

M(v∨ ⊗ c)⊗k N(v) by 1.2.12

In the fourth line we use that for every V ∈ V the functor V ⊗k −, being a
left adjoint, commutes with colimits, and that the coend on the right (like any
coend) is a colimit in V.

We follow these isomorphisms and see that they are given by

[f, x, y] 7→ [f̃ , x, y]

7→ [y, f̃ , x]

7→ [M(f̃)(x), y]

which is the straightforward shuffling of the given information.

1.3 Precomposition

In this section, as before, we denote V = k−Mod for a commutative ring k. We
will denote by C and D two essentially small V-enriched tensor categories, that
is symmetric monoidal and with unit. We denote by F : C → D a V-functor.
This section will culminate with Theorem 1.3.13, one of our main results.

Proposition 1.3.1. F induces a V-functor F ∗ : VD → VC by precomposition.

Proof. F ∗ maps any functor M to the functor MF , and any natural transfor-
mation α : M ⇒ N to the whiskered natural transformation α ∗ IdF . Since the
composite of two k-linear functors is k-linear, this is well defined.

Functoriality is a direct consequence of the Interchange Law for natural
transformations. It is immediate to see that F ∗ is k-linear.
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Proposition 1.3.2. Let F be essentially surjective on objects and full. Then
F ∗ is fully faithful.

Proof. Let M,N ∈ VD, and let

β = {βc : MF (c)→ NF (c)|c ∈ Ob(C)} ∈ VC(MF,NF ).

Let d be an object of D. By essential surjectivity of F , there is an object cd of
C such that there is an isomorphism fd ∈ D(F (cd), d). We choose a pair (cd, fd)
for every object of D, with fd = Idd when d is in the image of F . Now, we can
set

αd := N(fd) ◦ βcd ◦M(f−1
d ) : M(d)→ N(d)

α = {αd|d ∈ Ob(D)}

Now, let g ∈ D(d, d′). By fullness of F , there is a ∈ C(cd, cd′) such that

F (a) = f−1
d′ ◦ g ◦ fd : F (cd)→ F (cd′)

Hence, by naturality of β, we obtain the naturality of α:

αd′ ◦M(g) = N(fd′) ◦ βcd′ ◦M(f−1
d′ ) ◦M(g)

= N(fd′) ◦ βcd′ ◦M(F (a)) ◦M(f−1
d )

= N(fd′) ◦NF (a) ◦ βcd ◦M(f−1
d )

= N(g) ◦N(fd) ◦ βcd ◦M(f−1
d )

= N(g) ◦ αd

Now, it is an easy check that F ∗(α) = β, and we’ve proven F ∗ to be full.
Now, let α = {αd}d∈D, α′ = {α′d}d∈D ∈ VD(M,N), and suppose that F ∗(α) =

F ∗(α′). Then, for any c ∈ Ob(C), αF (c) = α′F (c) Let d be an object of D and

(cd, fd) be a couple chosen as before. By naturality of α, we have

αd ◦M(fd) = N(fd) ◦ αF (c),

and by naturality of α′, we have

α′d ◦M(fd) = N(fd) ◦ α′F (c).

By hypothesis, the left-hand sides are equal. And since fd is an isomorphism,
we have αd = α′d for any d, and F ∗ is faithful.

Proposition 1.3.3. The precomposition V-functor F ∗ : VD → VC has both left
and right adjoint V-functors: they are given by sending M to the left Kan
extension LanFM , respectively the right Kan extension RanFM . In particular,
F ∗ preserves all limits and colimits.
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Proof. Recall left Kan extensions from 1.2.13; right Kan extensions being the
dual notion, we only consider here the left adjoint.

For every M ∈ VC, define a V-functor F̃ (M) : D→ V by the following coend
formula (see 1.2.10):

F̃ (M) :=

∫ x∈C
M(x)⊗k D(Fx,−) (1.5)

By (1.3), this is the left Kan extension of M along F , that is: F̃ (M) = LanFM .
By varying M , this induces a V-functor VC → VD. By (1.2) we have a natural
isomorphism

VD(LanFM,N) ' VC(M,NF )

which tells us that F̃ = LanF (−) is left adjoint to F ∗. We can also check that
the unit η and counit ε of the adjunction LanF a F ∗ are given by:

1. For K ∈ VC, we use (1.5) and define the trivial enough map

ηK,c : K(c) −→ ((F ∗ ◦ LanF )(K))(c) =

∫ u∈C
D(Fu, Fc)⊗K(u)

x 7→ [IdFc, x]

2. For J ∈ VD, we define an evaluation map

εJ,d : ((LanF ◦ F ∗)(J))(d) =

∫ u∈C
D(Fu, d)⊗ J(Fu) −→ J(d)

[f : Fu→ d, x] 7→ J(f)(x)

Indeed, naturality is straightforward, and we check that both triangle identities
hold:

LanF (K)(d)
LanF (ηK)

++
[x ∈ K(c), f : Fc→ d]

� ++
LanF

(
F ∗ ◦ LanF

)
(K)(d)

εLanF (K)
ss

[IdFc, x, f ]'
ss

LanF (K)(d) [LanF (K)(IdFc)(x) = x, f ]

F ∗(J)(c) ηF∗(J)

++
x ∈ J(Fc)

�
++

(F ∗ ◦ LanF )(F ∗(J))(c)

F∗(εJ )
ss

[IdFc, x]'

ssF ∗(J)(c) , x

and we’ve established that those are the unit and counit
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Proposition 1.3.4. There is a canonical isomorphism yD ◦ F ' LanF ◦ yC,
given concretely by

D(Fc, d) −→
∫ x∈C

D(Fx, d)⊗k C(c, x)

f 7→ [f, Idc]

at each c ∈ C.

Proof. Let M be any functor in VC. By Yoneda’s lemma applied to (1.5), we
have

LanF (M) =

∫ x

VC(yC(x),M)⊗k (yD ◦ F )(x)

and thus, by abstracting away M and by (1.3) we obtain:

LanF =

∫ x

VC(yC(x),−)⊗k (yD ◦ F )(x) = LanyC(yD ◦ F )

Yoneda’s embedding yC is a fully faithful functor, hence according to (the dual
of) [19, Corollary X.3], the structural natural transformation of the left Kan
extension along yC

yD ◦ F ⇒ LanF ◦ yC
is an isomorphism. One can check that the structural map is indeed given
as in the statement. (Alternatively, one can check directly that the latter is
invertible.)

Proposition 1.3.5. Let F : C → D be as above, and moreover suppose that it
is a strong tensor functor. Then LanF is a strong tensor functor with respect
to the Day convolutions. The structure maps are as in (1.6) and (1.7) below.

Proof. Let us describe the structure maps

strgLanF
1 : 1VD

'−→ LanF (1VC)

and
strgLanF

M,N : LanF (M)� LanF (N)
'−→ LanF (M �N)

for any M,N ∈ VC. We will give their component at d ∈ D.
For the first one, we take the composite isomorphism

D(1, d) ' D(F1, d)
'−→
∫ x∈C

D(Fx, d)⊗k C(1, x) (1.6)

f 7→ [f ◦ (strgF1 )−1, Id1]

given by the isomorphism strgF1 : 1 ' F (1) of the tensor functor F and the
isomorphism of Proposition 1.3.4, that is, the fact that LanF preserves repre-
sentables.
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As for the second one, let us compute its domain and codomain explicitly.
According to the coend formula 1.2.15 for Day convolution and the coend for-
mula (1.5) for the left Kan extension LanF , combined with Fubini 1.2.11, we
obtain for each d ∈ Ob(D):(

LanF (M)� LanF (N)
)
(d) =∫ s,t∈D u,v∈C

D(s⊗ t, d)⊗k D(Fu, s)⊗k D(Fv, t)⊗k M(u)⊗k N(v)

and
LanF (M �N)(d) =∫ o,p,q∈C

D(Fq, d)⊗k C(o⊗ p, q)⊗k M(o)⊗k N(p)

In view of this, we consider the rather obvious map

µ := strgLanF
M,N,d : [f, g, h, x, y] 7→ [f ◦ (g ⊗ h) ◦ (strgFu,v)

−1, Idu⊗v, x, y] (1.7)

with image sitting at o := u, p := v and q := u⊗ v.
We check that µ is well-defined. Let [f, g, h, x, y] and [f ′, g′, h′, x′, y′] be

equal via a basic relation: there are ` ∈ D(r, r′), k ∈ D(s, s′), p ∈ C(u, u′) and
q ∈ C(v, v′) such that

r ⊗ s f

**
`⊗k ��

Fu

Fp ��

g // r
`��

Fv
h //

Fq ��

s

k��

M(p)(x) = x′

d

r′ ⊗ s′ f ′

44

Fu′
g′
// r′ Fv′

h′
// s′ N(q)(y) = y′ .

Then, we obtain from this a basic relation between the two images:

F (u⊗ v)

F (p⊗q)
��

∼= // Fu⊗ Fv

Fp⊗Fq
��

g⊗h // r ⊗ s

`⊗k
��

f // d

F (u′ ⊗ v′) ∼=
// Fu′ ⊗ Fv′

g′⊗h′
// r′ ⊗ s′

f ′
// d ,

hence µ
(
[f, g, h, x, y]

)
= µ

(
[f ′, g′, h′, x′, y′]

)
, so that µ is well-defined.

Now we claim that the inverse map µ−1 is as follows:[
F (u⊗ v)

a→ d, u⊗ v b→ w, x, y
]

(1.8)

7→
[
Fu⊗ Fv ' F (u⊗ v)

Fb→ Fw
a→ d, IdFu, IdFv, x, y

]
.

To see that it is well-defined, assume that we have [a, b, x, y] = [a′, b′, x′, y′] via
a basic relation in its source coend:

∃

u

k

��

v

`

��

w

m

��
s.t.

Fw
a //

Fm

��

d u⊗ v b //

k⊗`
��

w

m

��

x_

M(k)

��

y_

N(`)

��
u′ v′ w′ Fw

a′
// d u′ ⊗ v′

b′
// w x′ y′
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Then their images under µ−1 are equivalent in its target coend by the basic
relation witnessed by Fk, F`, k, ` and the following diagrams:

Fu⊗ Fv

Fk⊗F`
��

' // F (u⊗ v)

F (k⊗`)
��

Fb // Fw

Fm

��

a // d Fu

Fk

��

Fu

Fk

��

Fv

F`

��

Fv

F`

��

x_

M(k)

��

y_

N(`)

��
Fu′ ⊗ Fv′ ' // F (u′ ⊗ v′)

Fb′
// Fw′

a′
// d Fu′ Fu′ Fv′ Fv′ x′ y′

Thus µ−1 is a well-defined map.
Let us check that µ−1µ is the identity. For every [f, g, x, h, y] in its source,

the maps g, h, Idu, Idv and the commutative diagrams

Fu⊗ Fv

Id

44

g⊗h
��

' // F (u⊗ v)
' // Fu⊗ Fv

g⊗h// r ⊗ s
f // d Fu

Id // Fu

g

��

Fv
Id // Fv

h

��
r ⊗ s

f // d Fu
g // r Fv

h // s

show that indeed µ−1µ([f, g, x, h, y]) = [f, g, x, h, y], as wished.
For the other composite µµ−1, let [a, b, x, y] be any element of the source

coend of µ−1, as above. Then the maps b, Idu, Idv and the commutative squares

F (u⊗ v)

Id

33

Fb

��

Fu⊗ Fv'oo IdFu⊗IdFv // Fu⊗ Fv ' // F (u⊗ v)
Fb // w

a // d

F (u⊗ v)
a

// d

and

u⊗ v

Idu⊗Idv

��

Id // u⊗ v

b

��
u⊗ v b // w

show that µµ−1([a, b, x, y]) = [a, b, x, y] in the other coend, as required.
Finally, the verifications that (LanF , strg

LanF
M,N , strg

LanF
1 ) satisfies the axioms

of a tensor functor are similarly straightforward and left to the reader.

Corollary 1.3.6. The precomposition functor F ∗ is a lax tensor functor, with
structure maps laxF

∗

M,N : F ∗(M)�C F
∗(N)→ F ∗(M �D N) given by

[f, x, y] 7→ [F (f) ◦ strgFu,v, x, y]

and laxF
∗

1 : 1VC = C(1,−)→ D(1, F−) = F ∗(1VD) given by

f 7→ F (f) ◦ strgF1 .
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Proof. Indeed, it is the right adjoint to a strong monoidal functor, so it is
lax according to 1.1.5. Considering the construction by adjunction of the lax
structure, which uses the strong monoidal structure of LanF as well as the unit
η and the counit ε of the adjunction LanF a F ∗ (see the proof of 1.3.3), we get:

laxF
∗

M,N := F ∗(ε� ε) ◦ F ∗(µ−1) ◦ η,

where µ := strgLanF
M,N . We recall the various components:

1. For K ∈ VC,

ηK,c : K(c) −→ ((F ∗ ◦ LanF )(K))(c) =

∫ u∈C
D(Fu, Fc)⊗K(u)

x 7→ [IdFc, x]

2. For J ∈ VD,

εJ,d : ((LanF ◦ F ∗)(J))(d) =

∫ u∈C
D(Fu, d)⊗ J(Fu) −→ J(d)

[f : Fu→ d, x] 7→ J(f)(x)

3. For M,N ∈ VD,

µ : (LanF (M)� LanF (N))(d)→ LanF (M �N)(d)

[f, g, x, h, y] 7→ [f ◦ (g ⊗ h) ◦ (strgFu,v)
−1, Idu,v, x, y]

Now, one can put the pieces together, and check that laxF
∗

M,N,d is given by∫ u,v∈C
C(u⊗v, c)⊗kM(Fu)⊗kN(Fv) −→

∫ r,s∈D
D(r⊗s, Fc)⊗kM(r)⊗kN(s)

[f, x, y] 7→ [F (f) ◦ strgFu,v, x, y]

as announced. The formula for laxF
∗

1 is given by 1.1.5 as well.

Corollary 1.3.7. F ∗(1VD) is a commutative monoid in VC.

Proof. Indeed, 1VD is a commutative monoid in VD by 1.1.13, we just saw that
F ∗ is lax symmetric monoidal, and we apply 1.1.12.

Notation 1.3.8. From now on, when it is seen as a monoid, we will denote

A := F ∗(1VD).

Lemma 1.3.9. If F is full, then each component ηM : M → F ∗ ◦ LanFM of
the unit of the adjunction LanF a F ∗ is an epimorphism in VC.
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Proof. We recall from above that ηM is given at c ∈ Ob(C) by the following
map:

x ∈M(c) 7→ [IdFc, x]

Now, let [f, x] be any element of the target, with f ∈ D(Fu, Fc), and x ∈M(u).
Since F is full, there exists g ∈ C(u, c) such that Fg = f . Hence, if one sets
y := M(g)(x), one has [f, x] = [IdFc, y] via a basic relation:

Fu

Fg

��

f

&&
Fc ; y = M(g)(x)

Fc

This shows that every ηM,c is surjective, hence ηM is an epimorphism.

Corollary 1.3.10. Let F : C→ D be a strong tensor functor, and consider the
associated monoidal adjunction, as above. If F is full, the unit map

uA : 1VC → F ∗(1VD) = A

of the monoid A is an epimorphism in VC.

Proof. It follows from the Lemma 1.3.9 above, since the unit map is an instance
of the unit of the adjunction: by definition, we have an isomorphism uA ' η1

thanks to the fact that LanF is strong monoidal.

Corollary 1.3.11. On any functor M ∈ VC, there is at most one possible
structure of A-module.

Proof. Let λ1, λ2 : A �M → M be two such structures. By the unit axiom of
modules, we have that

λi ◦ (uA � IdM ) : 1�M →M

is equal to the canonical isomorphism lunM , for i ∈ {1, 2}. But since uA is an
epimorphism, by 1.3.10, and since −� IdM is right exact (indeed, it has a right
adjoint by part 7 of Proposition 1.2.16), then uA� IdM is also an epimorphism,
hence the equality implies λ1 = λ2.

Corollary 1.3.12. If (M,λ) and (M ′, λ′) are A-modules in VC, any morphism
ψ : M → M ′ preserves the actions. Thus, the forgetful functor (M,λ) 7→ M is
not only faithful but also full.
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Proof. Let’s consider the following diagram.

1�M
lunM

//

Id1�ψ

��

u�IdM &&

M

ψ

��

A�M
λ

::

IdA�ψ
��

A�M ′

λ′

$$
1�M ′

u�IdM′

99

lunM′
// M ′

The unit axiom ensures the commutativity of both triangles. The left trapezoid
commutes by functoriality of the tensor product. The outward square commutes
by naturality of the left unitor. Only the right trapezoid remains.

By 1.3.10, uA�IdM is an epimorphism, hence the following calculation yields
the commutativity:

ψ ◦ λ ◦ (uA � IdM ) = ψ ◦ lunM (1.9)

= lunM ′ ◦ (Id1 � ψ) (1.10)

= λ′ ◦ (uA � IdM ′) ◦ (Id1 � ψ) (1.11)

= λ′ ◦ (IdA � ψ) ◦ (uA � IdM )

The equality (1.9) holds by the unit axiom for the action λ ; (1.10) holds by
naturality of the left unitor ; (1.11) holds by the unit axiom for the action λ′.

We can now state the main theorem of this chapter:

Theorem 1.3.13. Let F : C → D be a strong tensor V-functor. By standard
constructions that we have recalled above, we obtain a (solid-arrow) diagram as
follows:

VC

LanF

~~ Free %%
VD

E
//

F∗

>>

A−ModVC

U

ee

Then there exists a unique functor E such that U ◦ E = F ∗. If moreover F is
full and essentially surjective and C is rigid, then E is an equivalence of tensor
categories identifying the adjunction (LanF , F

∗) between the left Kan extension
(see 1.3.3) and precomposition with the adjunction (Free, U) between the free
module functor (see 1.1.19) and the forgetful functor.

The proof is given in the next section along with the construction of E
(see 1.12).
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We note that all the constructions in the theorem are rather standard, in-
cluding the comparison functor E. There are also many variants of such results,
saying that E is an equivalence in certain nice situations.

Remark 1.3.14. We stress that our theorem also says that E is a tensor equiv-
alence. If one only wants E to be a plain equivalence of categories, then it is
not necessary to assume the fullness of F ; the result can be obtained from a
general monadicity theorem for abelian categories (see [8]) together with an ex-
plicit computation showing that the natural transformation A� (−)⇒ F ∗LanF
obtained from the lax structure of F ∗ (which is automatically a morphisms of
monads on VC by Lemma 2.8 of [2]) is in fact invertible. This only uses the
essential surjectivity of F and the rigidity of C and D.

1.4 The comparison functor E

Let us now prove Theorem 1.3.13. We will note from which point on we will
need the various hypotheses.

Notation 1.4.1. When there will be no risk of confusion, we will denote by 1
the tensor unit for Day convolution, which is D(1D,−) or C(1C,−), depending
on the situation.

Both adjunctions in Theorem 1.3.13 have been studied already, so the first
step of the proof of the theorem is the construction of E, which is as follows.

Recall that for every M ∈ VD, there is a (unique) structure of D(1D,−)-
module on M (see 1.1.13), given by the left unitor lunM : 1 �D M

∼−→ M . By
Proposition 1.3.5, F ∗ is lax monoidal, hence by 1.1.12, it sends 1 to a monoid
A = F ∗(1), and also the left 1-module M to a left F ∗(1)-module F ∗(M) in VC

with action

λM := F ∗(lunM ) ◦ laxF
∗

1,M : F ∗(1)�C F
∗(M) −→ F ∗(M) .

For any α : M ⇒ M ′, one can check that F ∗(α) is an F ∗(1)-module mor-
phism, that is, that the outer square commutes:

F ∗(1)�C F
∗(M)

λM

//

Id�CF
∗(α)

��

laxF
∗

((

F ∗(M)

F∗(α)

��

F ∗(1�M)

F∗(lunM )

88

F∗(1�α)

��
F ∗(1�D M

′)

F∗(lunM′ ) &&
F ∗(1)�C F

∗(M ′)
laxF

∗

66

λM′
// F ∗(M ′)
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Indeed, the triangles commute by definition, the left trapezoid commutes by
naturality of laxF

∗
, and the right trapezoid commutes by naturality of lun.

Hence F ∗(α) automatically commutes with actions.
We thus obtain a functor

E : VD → A−ModVC

M 7→ (F ∗(M), λM ) (1.12)

α 7→ F ∗(α)

By construction, we obtain the first half of the comparison of the adjunctions:

U ◦ E = F ∗ . (1.13)

Let’s study the monoidality of the functor E. In general, we have:

Lemma 1.4.2. The lax structure of F ∗ : VD → VC lifts along the forgetful
functor U to define a lax structure on E : VD → A−ModVC .

Proof. We know from Corollary 1.3.5 that the functor F ∗ is lax monoidal, and
from the defining coequalizer (1.1) of Proposition 1.1.16 that the monoidal struc-
ture ⊗A of the category of A-modules is a quotient of that of VC. We claim that
the lax structure of F ∗ factors through that quotient; that is, for M,M ′ ∈ VD,
there is a morphism making the following diagram commutative:

F ∗(M)⊗A F ∗(M ′)
laxE

M,M′ // F ∗(M �M ′)

F ∗(M)�C F
∗(M ′)

OOOO

laxF
∗

M,M′

44

F ∗(M)�C F
∗(1)�C F

∗(M ′)

OOOO

(1.14)

There can be but one such dashed arrow, and it will give the lax structure of
E, hence we denote it laxEM,M ′ .

Note that it is really enough to show that laxF
∗

M,M ′ factors through the co-
equalizer F ∗(M)⊗AF ∗(M ′), because the factored map is automaticalyA− equiv-
ariant (as we know from 1.3.12), and the coherence axioms hold because they

do for laxF
∗

and because the coequalizer’s map is an epimorphism.
Note that the lax structure map laxE1 at the unit is also the unique A-

equivariant factorization through the unit uA of A, that is, the identity:

A = F ∗(1)
laxE1 // F ∗(1) = U ◦ E(1)

1VC

uA

OO

laxF
∗

1

66
(1.15)
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Indeed, by 1.1.12 and 1.1.13, uA := F ∗(Id1VD
) ◦ laxF

∗

1 .

Let us show that laxF
∗

M,M ′ factors as claimed. For this, we need to make
the coequalizer (1.1) explicit in our situation. First, recall from point 3 of
Proposition 1.2.16 the associativity of �C is explicitly given, for N,N ′, N ′′ in
VC and c an object in C, by

aC,c : [u⊗t f−→ c, r⊗s g−→ u, x ∈ N(r), y ∈ N ′(s), z ∈ N ′′(t)] 7→ [f◦(g⊗Idt), Ids⊗t, x, y, z]

The mindful reader will have noted that the coequalizer diagram (1.14) uses
a notation that is not defined yet, since the Day convolution product is not
strictly associative. Note that both −� (−�−) and (−�−)�− are equivalent
to a more symmetrical form, written as follows for our three functors N , N ′ and
N ′′, at c:

(N �N ′ �N ′′)(c) :=

∫ a,a′,a′′∈C
C(a⊗ a′ ⊗ a′′, c)⊗k N(a)⊗k N

′(a′)⊗k N
′′(a′′)

The isomorphisms are given by the maps below:

(N �N ′ �N ′′)(c)→ ((N �N ′)�N ′′)(c)

[f, x, x′, x′′] 7→ [f, Idu, x, x
′, x′′]

(N �N ′ �N ′′)(c)→ (N � (N ′ �N ′′))(c)

[f, x, x′, x′′] 7→ [f, Idu, x, x
′, x′′]

The well-defineness and the fact that these are isomorphisms are straightforward
if the reader refers to the coend formula in the point 3 of 1.2.16. We can now
explicitly write the coequalizer (1.14) we are interested in at an object c in C:

(F ∗(M)� (F ∗(1)� F ∗(M ′)))(c)
Id�λF∗(M′)

''
(F ∗(M)� F ∗(1)� F ∗(M ′))(c)

'
66

'
((

(F ∗(M)� F ∗(M ′))(c)

((F ∗(M)� F ∗(1))� F ∗(M ′))(c)

(λF∗(M)◦s)�Id

77
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Using the coend formula, we get this:∫ a,vC(a⊗ v, c)⊗k
∫ b,a′ C(b⊗ a′, v)⊗k M(Fa)⊗k D(1, F b)⊗k M

′(Fa′)

Id�λF∗(M′)

��

∫ a,b,a′ C(a⊗ b⊗ a′, c)⊗k M(Fa)⊗k D(1, F b)⊗k M
′(Fa′)

'
55

'

##

(
∫ w,w′∈C C(w ⊗ w′, c)⊗k M(Fw)⊗k M

′(Fw′)

∫ u,a′ C(u⊗ a′, c)⊗k
∫ a,bC(a⊗ b, u)⊗k M(Fa)⊗k D(1, F b)⊗k M

′(Fa′)

(λF∗(M)◦s)�Id

77

Then, once we recall the definition of λF∗(M) = F ∗(lunM )◦laxF
∗

1,M from 1.1.12
and 1.1.13 and we refer ourselves to both the point 4 of 1.2.16 and the Corollary
1.3.6, the maps are fairly obvious. We set k := strgFa,b ◦ (IdFa ⊗ g) ◦ run−1

Fa and

` := strgFb,a′ ◦ (g ⊗ IdFa′) ◦ lun−1
Fa′ , and then for every

[f, x, g, x′] ∈ (F ∗M � F ∗M ′ � F ∗M ′′)(c)

we obtain
[f, x, g, x′] 7→ ζ := [f, x,M ′(`))(x′)]

upstairs and
[f, x, g, x′] 7→ ξ := [f,M(k)(x), x′]

downstairs. By the definition of coequalizers, the images of ζ and ξ are the same
in the quotient object

(
F ∗(M) ⊗A F ∗(M ′)

)
(c), which is precisely the quotient

of
(
F ∗(M) � F ∗(M ′)

)
(c) by the k-linear hull of the relations ζ = ξ for all

[f, x, g, x′].

Thus, to prove that laxF
∗

M,M ′ factors through the coequalizer, it suffices to
verify that it identifies the class of ξ to that of ζ. Indeed,

laxF
∗

M,M ′(ζ) = [Ff ◦
(
strgF

)−1
,M(k)(x), x′]

and
laxF

∗

M,M ′(ξ) = [Ff ◦
(
strgF

)−1
, x,M ′(`)(x′)],

and if we consider the following diagram,

F (a⊗ b)⊗ F (a′)
Ff◦strga⊗b,a′ // Fc

F (a)⊗ F (a′)

k⊗IdF (a′)

OO

? //

IdF (a)⊗`
��

F (c)

F (a)⊗ F (b⊗ a′)
Ff◦strga,b⊗a′

// F (c)
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we can see we have a zig-zag of basic relations in F ∗(M �M ′)(c), given by k
and `, on the condition that there exists a map in the place of the dashed arrow
that makes the graph commutative, in other words, on the condition that

Ff ◦ strga⊗b,a′ ◦ (k ⊗ IdF (a′)) = Ff ◦ strga,b⊗a′ ◦ (IdF (a) ⊗ `).

But this is easily obtained via the hexagon axiom for the tensor functor F (see
1.1.2), thus ending the proof of Lemma 1.4.2.

From now on, we assume that F is full and essentially surjective and that the
tensor category C is rigid. We note at this point that since F is an essentially
surjective strong tensor functor, it follows by 1.1.10 that D is also rigid. We need
this fact in order to use the special formulas 1.2.18 for the Day convolutions in
VC and VD.

Lemma 1.4.3. The morphism laxF
∗

M,N is an isomorphism for any M,N ∈ VD.

Proof. For M,N ∈ VD, and for an object c of C, we recall the coend formulas:

(F ∗(M)� F ∗(N))(c) =

∫ u,v∈C
C(u⊗ v, c)⊗k M(Fu)⊗k N(Fv)

F ∗(M �N)(c) =

∫ r,s∈D
D(r ⊗ s, Fc)⊗k M(r)⊗k N(s)

Lemma 1.2.18 gives the following isomorphism

(F ∗(M)� F ∗(N))(c) '
∫ u∈C

M(Fu)⊗k N(F (u∨ ⊗ c)) (1.16)

[f, x, y] 7→ [x,N(Ff)(y)]

where we use the notation

Ff := strgFu∨,c ◦ (IdFu∨ ⊗ (Ff ◦ strgFu,v)) ◦ (σD ⊗ IdFv) ◦ (ηFu ⊗ IdFv) ◦ lun−1
Fv

and the isomorphism

F ∗(M �N)(c) '
∫ d∈D

M(d)⊗k N(d∨ ⊗ Fc) (1.17)

[g, x′, y′] 7→ [x′, N(ḡ)(y′)]

with d = r and

ḡ := (Idr∨ ⊗ g) ◦ (σr,r∨ ⊗ Ids) ◦ (ηr ⊗ Ids) ◦ lun−1
D,s .

Now, we claim that under the identifications (1.16) and (1.17), the map laxF
∗

M,N,c

becomes as follows:∫ u∈C
M(Fu)⊗k N(F (u∨ ⊗ c)) −→

∫ d∈D
M(d)⊗k N(d∨ ⊗ Fc)

[x, y] 7→ [x,N(strgFu∨,c)
−1(y)]
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It is straightforward to check that this is indeed the case, and also – by using that
F is essentially surjective and full – that the assignment [x, z] 7→ [x,N(strgF )(z)]

is well-defined and thus yields an inverse map. Therefore laxF
∗

M,N,c is also an
isomorphism, as wished.

Remark 1.4.4. Note however that Lemma 1.4.3 does not make F ∗ a strong
tensor functor, because in general the structure map laxF

∗

1 : C(1,−)→ D(1, F−)
is not invertible.

Corollary 1.4.5. The functor E is strong monoidal.

Proof. We have the following commutative triangle:

F ∗(M)⊗A F ∗(N)
laxEM,N // F ∗(M �N)

F ∗(M)� F ∗(N)

coeq

OOOO

laxF
∗

M,N

66

Since, by Lemma 1.4.3, laxF
∗

M,N is invertible, and since the coequalizer’s map

is an epimorphism, both the coequalizer’s map and laxEM,N are isomorphisms.
Indeed, we have(

(laxF
∗

M,N )−1 ◦ laxEM,N

)
◦ coeq = IdF∗(M)�F∗(N)

of course, and since coeq is an epimorphism,

coeq◦
(
(laxF

∗

M,N )−1◦laxEM,N

)
◦coeq = coeq◦IdF∗(M)�F∗(N) = IdF∗(M)⊗AF∗(N)◦coeq

implies that

coeq ◦
(
(laxF

∗

M,N )−1 ◦ laxEM,N

)
= IdF∗(M)⊗AF∗(N)

and coeq is an isomorphism. Hence laxEM,N is an isomorphism.

Furthermore laxE1 : A → E(1) is the identity by (1.15). Hence, E is strong
monoidal.

Proposition 1.4.6. Let (M,λ) ∈ A − ModVC be any A-module. Then the
underlying functor M : C→ V factors through F : C→ D.

Proof. Let (M,λ) be an object in A −ModVC . We want to show that, up to
a canonical isomorphism, the underlying functor M factors through F : given
such an A-module, we need a way to construct a functor M : D → V and a
natural isomorphism M ∼= M ◦ F .

For any object d in D, we choose an object cd in C and an isomorphism
ϕd ∈ D(d, F (cd)). We can do so because F is essentially surjective. Moreover, if
d is already of the form Fc we can choose ϕd to be an identity map for simplicity,
namely ϕc := IdFc = Idd for such a c ∈ C. We set M(d) := M(cd) on objects.
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For ψ ∈ D(d, d′), the following graph defines M(ψ):

M(d)

M(ψ)

��

M(cd)

M(ψ̃)

��
M(d′) M(cd′)

where ψ̃ : cd → cd′ is chosen such that

F (ψ̃) = ϕd′ ◦ ψ ◦ ϕ−1
d ∈ D(F (cd), F (cd′))

and exists by the fullness of F .
We need to check that this is well defined, i.e. that for any choice of such

a ψ̃, the definition of M is unchanged. Let ψ̃1, ψ̃2 ∈ C(cd, cd′) be such that
F (ψ̃1) = F (ψ̃2) = ϕd′ ◦ ψ ◦ ϕ−1

d . Consider the diagram

(A�M)(cd)

&& &&
(A�M)(ψ̃2)

��

(A�M)(ψ̃1)

��

xxxx
M(cd)

M(ψ̃1)

��

M(cd)

M(ψ̃2)

��

(A�M)(cd′)

&& &&xxxx
M(cd′) M(cd′)

where the diagonal arrows are A-action components at cd and cd′ respectively.
Recall that these maps are coequalizer maps, see Lemma 1.1.17. Now let us
compute the central downward arrows, using the isomorphisms of Lemma 1.2.18:∫ w

A(w∨ ⊗ cd)⊗k M(w) '
∫ w

D(F (w), F (cd))⊗k M(w)

→
∫ u

D(F (u), F (cd′))⊗k M(u) (1.18)

'
∫ u

A(u∨ ⊗ cd)⊗k M(u)

These two maps (1.18) are in fact the same: for β ∈ D(F (w), F (cd)) and x ∈
M(w), they become respectively the maps

[β, x] 7→ [F (ψ̃1) ◦ β, x] and [β, x] 7→ [F (ψ̃2) ◦ β, x]

at u = w. By hypothesis on the ψ̃i, we have F (ψ̃1) = F (ψ̃2) and therefore the
two maps are equal. Thus

(A�M)(ψ̃1) = (A�M)(ψ̃2),
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from which it follows that M(ψ̃1) = M(ψ̃2) on the quotients, as claimed. This
shows that M is well-defined on morphisms.

It is obvious from the definition that M(Id) = Id, and the fact that it
commutes with composition follows from the well defineness on morphisms:

since by definition we get F (ψ̃′ ◦ ψ) = F (ψ̃′) ◦ F (ψ̃), by the same reasoning as
before we have

M(ψ′ ◦ ψ) := M(ψ̃′ ◦ ψ) = M(ψ̃′ ◦ ψ̃) =: M(ψ′) ◦M(ψ) .

Hence M is a functor D→ V.
Through the choices of pairs (cd, ϕd), with the simplification ϕFc = IdFc as

above, we obtain the identity M ◦ F = M .

Proof of Theorem 1.3.13. We can now assemble all the pieces of our proof. By
(1.13), we have for every pair of objects M,N ∈ VD the following commutative
triangle:

VC(F ∗M,F ∗N)

VD(M,N)

F∗M,N
77

EM,N

// A−Mod(EM,EN)

UM,N
ii

The diagonal maps are bijections since F ∗ and U are fully faithful (see 1.3.2
and 1.3.12), hence so is the horizontal one, that is, E is fully faithful too. By
Proposition 1.4.6, we see that E is also essentially surjective, because for every
A-module (M,λ) its underlying functor is of the form M = M ◦ F = F ∗(M),
hence (M,λ) = E(M). Therefore E is an equivalence of categories. Moreover,
it is a strong tensor functor by 1.4.5.

It remains to find a natural isomorphism E ◦ LanF ' Free. Let E−1 be an
adjoint quasi-inverse of E. Then we obtain an isomorphism F ∗ ◦E−1 ' U from
U ◦E = F ∗, and both Free and E◦LanF (as a composite of two left adjoints) are
left adjoints of U . Hence by uniqueness of left adjoints they must be canonically
isomorphic, as wished.



Chapter 2

Cohomological Mackey
functors and
precomposition

In this chapter, we apply our first Main Theorem in order to reprove a well-
known result relating Mackey functors and cohomological Mackey functors for
a finite group G, essentially due to Yoshida [28]. Thanks to our proof, we
will gain insight into the tensor structure of cohomological Mackey functors
which as far as we know was not yet available in the literature. A similar (but
somewhat different) functorial approach to ours on Yoshida’s results can be
found in section 10 of [22].

Notation 2.0.1. We fix G a finite group and k a commutative ring throughout
this chapter. We denote by Set the category of finite sets and maps, by G-set
the category of finite G-sets and G-equivariant maps, and by V the category of
k-modules, as before.

2.1 From the Lindner category to permutation
modules

In this section, we define and describe the category kSp(G) of spans over G-
sets and the category permk of permutation k-modules. We recall the universal
property of span categories from [18], and define a V-functor kSp(G)→ permk
that we prove to be strong monoidal, full and essentially surjective.

We denote by

• 1 := G/G “the” final object in G-set, and the exclamation mark denotes
the only morphism to it,

• 0 := ∅ the initial object in G-set, and the exclamation mark denotes the
only morphism from it,

36
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• ∆ = ∆X the diagonal application X → X ×X, x 7→ (x, x),

• [G/H] a set of representatives of the equivalence classes of the quotient of
G by one of its subgroup H,

• kG the group algebra of G, that is the free k-module on the set G equipped
with the multiplication extended k-bilinearly from the product of G,

• kG−mod the category of finitely generated left modules over this algebra.

Definition 2.1.1. Let Sp(G) be the category with objects finite G-sets, and
morphisms between X and Y are given by equivalence classes of diagrams

Y
g←− V f−→ X

in G-set, for the following equivalence relation: two diagrams are equivalent
if there exists a G-equivariant isomorphism h such that the following diagram
commutes

V
g

~~

f

  
h

��

Y X

V ′
f ′

>>

g′

``

.

Composition is obtained by pullbacks, and the identity of a G-set X is the
equivalence class of the span

X X
IdX //IdXoo X .

A span will either be written as a flat diagram, as for the identity span above,
or as a triangle (as in the next diagram below), or as a tuple (Y, g, V, f,X). By
default, a span will be read from the right hand side to the left hand side, but
sometimes it is convenient to consider both reading directions. When there will
be a risk of confusion, a doted arrow will denote the reading direction, as in:

V
g

~~

f

  
Y X.oo

Sometimes, the abuse of calling “span” its equivalence class will be made, but
all constructions will be well defined regarding the equivalence relation, hence
robust to such abuse.

Proposition 2.1.2. Sp(G) is a semi-additive rigid tensor category. That is, it
has the structure of a semi-additive category (see Definition 1.2.4) and the struc-
ture of a rigid tensor category, such that the tensor product functor preserves
the additive structure on the Hom sets (and therefore also preserves biproducts
of objects).
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Proof. We only give elements of the proof, enough to describe the different
structures and give an idea of how things can be computed. A more detailled
proof can be found in Serge Bouc’s book [7]. A more general approach is done
by Panchadcharam and Street in [22], where they study the category of spans
over any lextensive category.

Any binary pullback in Set can be described explicitly as follows: let X, Y ,
and Z be sets, and f : X → Z, g : Y → Z be maps. Then the set

P = {(x, y) ∈ X × Y |f(x) = g(y) ∈ Z} ,

together with canonical projections, gives the pullback square

P

pY

��

pX // X

f

��
Y

g
// Z

It is straightforward to check this is, when sets are G-sets, a pullback of G-sets.
Thus, one can define the composition of two composable morphisms in Sp(G)
as follows

Y

g′

��
g

��

X

f

��
f ′

��

P
f ′◦pX

��
g′◦pY
��

; � //

T Z Z U T U.

Now, suppose that the spans below are equivalent via respectively k : Y → Y1

and ` : X → X1 (
T

g′1←− Y1
g1−→ Z

)
∼
(
T

g′←− Y g−→ Z
)

(
Z

f ′1←− X1
f1−→ U

)
∼
(
Z

f ′←− X f−→ U
)
.

Then, the span obtained by pullback on the left hand side

T
g′1◦pY1←−−−− P1

f ′1◦pX1−−−−−→ U

is in the same class as

T
g′◦pY←−−−− P f ′◦pX−−−−→ U

via (x, y) 7→ (`(x), k(y)), and composition is well defined. One can easily check
that composition is associative, and that the identity span is neutral for relevant
compositions.

It follows from the fact that 0 := ∅ is initial in G − set that it is a zero
object in Sp(G), with , for any object X, exactly one span from X to 0 and thus
exactly one span from 0 to X:

0

! !

��

0

!!

��
0 X

!
oo X 0.

!
oo
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More generally, for any two objects X and Y , there exists a zero span from one
to the other, which is the only span in Sp(G)(X,Y ) that factors through 0:

0

!

��

!

  
Y X.

0XY
oo

Now, we have all the ingredients to show that the disjoint union of G-sets
gives a biproduct in Sp(G). Indeed, considering the class of the four following
spans:

X � q

##

YM m

||
X

iX

22 X
∐
Y

pY
++

pX
ss Y,

iY

ll

one can easily check that

pX ◦ iY = 0Y X , pY ◦ iX = 0XY ,

pX ◦ iX = IdX , and pY ◦ iY = IdY .

Furthermore, one can define the sum of two morphisms in Sp(G)(Z, T ) as
follows:

V

g′

��
g

��

U

f ′

��
f

��

V
∐
U

g∪f

!!

g′∪f ′

~~
+ =

T Z T Z T Z.

Checking this is well defined on the class of spans is straightforward, and then
the final relation for biproducts iX ◦ pX + iY ◦ pY = IdX

∐
Y follows from this

definition of the sum in Sp(G)(X
∐
Y,X

∐
Y ). As expected, one can check that

for any two objects X and Y , the hom-set Sp(G)(X,Y ) equipped with the sum
is a commutative monoid with 0XY as neutral element. It is straightforward to
check that composition is bilinear.

The cartesian product of G-sets induces a symmetric monoidal structure on
Sp(G):

1. It induces a functor Sp(G) × Sp(G) → Sp(G), simply by sending a pair

of spans f : X
α←− V

β−→ Y and f ′ : X ′
α′←− V ′

β′−→ Y ′ to the product span

f × f ′ : X ×X ′ (α,α′)←−−−− V × V ′ (β,β′)−−−−→ Y × Y ′.

2. The G-set 1 is the unit object.



CHAPTER 2. COHOMOLOGICAL MACKEY FUNCTORS 40

3. The right unitor at X is given by the class of the span

X × 1

runX

||
X X × 1 ,

runXoo

containing the right unitor of X in (G − set,×, 1), and similarly for the
left unitor.

4. The associator and the symmetry are constructed similarly. For instance,
the latter is given by the class of the span

X × Y
(x,y)7→(y,x)

yy
Y ×X X × Y .

σX,Yoo

Checking the coherence conditions is straightforward.
For the monoidal structure described above, kSp(G) is rigid if one sets that

any G-set is its own monoidal dual, and that the unit and counit are as follows:

X

!

��

∆

zz

X

!

��

∆

$$
X ×X∨ 1

ηX
oo 1 X∨ ×X.

εX
oo

(Duality is denoted by X∨ = X, the ∨ being used to keep track of the
variance (co- or contra-) of our constructions.)

We check that the first relation holds

W
p1

ww

p2

''
X ×X

Id×!

yy

Id×∆

''

X ×X
!×Id

%%

∆×Id

ww
X × 1 X ×X∨ ×XId×εXoo 1×X

ηX×Idoo

W is the set of quadruplets (x, y, z, t) ∈ X ×X ×X ×X such that (x, y, y) =
(z, z, t), hence it is isomorphic to 1 × X via (x, x, x, x) 7→ (1, x). The map p1

is the projection along the first two coordinates, and the map p2 the projection
along the third and fourth. We obtain the following commuting diagram, and
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the result follows by runX ◦ σ1,X ◦ lun−1
X = IdX .

W
(!×Id)◦p2

$$

(Id×!)◦p1

zz
∼=

��

X × 1 1×X

1×X
(1,x)7→(x,1)

dd

The second condition is checked in a similar way.

Definition 2.1.3. We define the V-category kSp(G) to be the k-linearization of
Sp(G) as in Proposition 1.2.5. Concretely, given two G-sets X and Y , consider
the monoid Sp(G)(X,Y ) and make it a group by Grothendieck group comple-
tion, that is by giving any morphism a formal inverse. This group completion
can be seen as a change of scalars:

Sp(G)(X,Y )→ Z⊗N Sp(X,Y ).

This map is injective because, as one can easily check, the monoid is cancellative:
a+b = c+b in Sp(G)(X,Y ) implies that a = c. We obtain the category kSp(G)
by going one step further, and changing the base ring to k:

Z⊗N Sp(G)(X,Y )→ k⊗Z Z⊗N Sp(X,Y ) =: kSp(G)(X,Y ).

The composition maps in kSp(G) are simply obtained by extending k-bilinearly
the composition maps of Sp(G).

Proposition 2.1.4. kSp(G) is an additive and rigid tensor V-category.

Proof. This is straightforward from the definition.

Definition 2.1.5. We denote by permk(G) the full subcategory of kG −mod
with objects the permutation modules over kG, which are the kG-modules which
admit a finite G-invariant basis X (in particular they are finitely generated free
over k). Given a permutation module M , each such basis X is a G-set and
yields an isomorphism kX ' M with the free k-module kX over X equipped
with the linearly extended kG-action.

Remark 2.1.6. As a full subcategory, permk(G) inherits the k-linear structure
of kG−mod, as well as its tensor-structure because the tensor product M ⊗kN
of two permutation modules is again a permutation module. Indeed, given two
permutation kG-modules M,N with invariant bases X,Y respectively, the set
{x⊗ y | x ∈ X, y ∈ Y } provides an invariant basis of M ⊗k N .

Definition 2.1.7. We define a functor F : kSp(G)→ permk(G) by the following
assignments:

1. A finite G-set X is mapped to the permutation module kX.
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2. The class of any span (Y
f← V

g→ X) is mapped to the module homomor-
phism defined on the k-basis X of kX by x 7→

∑
v∈g−1(x) f(v).

In order to study F , in particular to see that it is a functor, we need the
two following lemmas, which we will refer to as Lindner’s lemma and Yoshida’s
lemma, because they are the key to bridge Lindner’s work on Mackey functors
to Yoshida’s work on cohomological Mackey functors.

Lemma 2.1.8 (Lindner’s lemma). Let C be a category with every pullback. The
category of spans on C is constructed analogously to Sp(G), and we denote it by
Sp(C). One can embed C and Cop into Sp(C) via the faithful functors:

X 7→ X , (f : X → Y ) 7→ (Y, f,X, IdX , X)

and
X 7→ X , (f : X → Y ) 7→ (X, IdX , X, f, Y ).

Now, if F1 : C→ D and F2 : Cop → D are two functors such that:

• for any object X ∈ Ob(C), we have F1(X) = F2(X)

• for any pullback d◦c = b◦a in C, we have
(
F1(a)◦F2(c)

)
=
(
F2(b)◦F1(d)

)
,

then there exists a unique functor F making the following diagram commutative.

C� _

��

F1

""
Sp(C)

F // D

Cop
� ?

OO

F2

<<

It is given by X 7→ F1(X) = F2(X) =: F (X) on objects and (Y, f, Z, g,X) 7→(
F1(f) ◦ F2(g)

)
on morphisms.

Proof. This is an easy exercise.

Lemma 2.1.9 (Yoshida’s lemma). Let H and K be subgroups of G, then the
following is an isomorphism:

Φ : kH\G/K → HomkG(kG/H,kG/K)

HxK 7→ (gH 7→
∑
u

guxK),

where u runs over a complete set of representatives of H/(H ∩ xKx−1).

Proof. This is half of lemma 3.1 of [28]. The proof is a direct verification, and
the author cites 3.4 of [25].
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Proposition 2.1.10. As defined in 2.1.7, F is a strong tensor V-functor which
is essentially surjective on objects and full.

Proof. 1. Considering F1, that maps any finite G-set to the module kX and
any G-equivariant map f : X → Y to its k-linear extension on kX, it is
straightforward to check that it is a functor G− set→ permk(G).

Considering F2, that maps any finite G-set to the module kX and any
G-equivariant map f : X → Y to the kG-module homomorphism

kY → kX, y 7→
∑

x∈f−1(y)

x ,

where f−1(y) := {x ∈ X|f(x) = y}, it is straightforward to check that it
is a functor G− setop → permk(G).

Those two functors meet the requirements of Lindner’s Lemma 2.1.8: given
any pullback in G-set d ◦ c = b ◦ a, the induced square is commutative.

kX
F1(a) // kY

kZ

F2(c)

OO

F1(d)
// kT

F2(b)

OO

Indeed, given any z ∈ Z,

(F1(a) ◦ F2(c))(z) =
∑

x∈c−1(z)

a(x),

and
(F2(b) ◦ F1(d))(z) =

∑
y∈b−1(d(z))

y.

Furthermore, we can assume that X = {(z, y) ∈ Z × Y |d(z) = b(y)} and
that a and c are the two projections, and from this assumption it follows
that a(c−1(z)) = {y ∈ Y |b(y) = d(z)}, hence a(c−1(z)) = b−1(d(z)) and
the square is commutative.

By Lemma 2.1.8, there exists a unique functor F̃ extending F1 and F2

on Sp(G). Since permk(G) is a V-category, F̃ extends uniquely to a V-
functor on kSp(G), which is given by the formula of Definition 2.1.7, as
one check immediately. This show that F as in Definition 2.1.7 is indeed
a functor, in fact a V-fuctor, and is the unique one making the diagram
below commutative. It is essentially surjective by construction.

G− set� _

��

F1

&&
kSp(G)

F // permk(G)

G− setop
� ?

OO

F2

88
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2. Let us check that F is full. Let H and K be subgroups of G, and fix
x ∈ G. We set

Lx = H ∩ xKx−1

and
ψx : kG/H → kG/K , gH 7→

∑
u∈[H/Lx]

guxK.

Set px : G/Lx → G/H to be the canonical projection, and

f : G/Lx → G/K , gLx 7→ gxK.

The map f is well defined, because Lxx ⊆ xK, hence

∀` ∈ Lx,∃k ∈ K

such that `x = xk, and so

f(g`Lx) = g`xK = gxkK = gxK = f(gLx).

We can construct a span from those maps, and compute its image by our
functor F :

F
(
G/K, f,G/Lx, px, G/H

)
: kG/H → kG/K

is an homomorphism of kG-modules, defined on the basis by

gH 7→
∑

z∈p−1
x (gH)

f(z).

Since p−1
x (gH) = {ghLx|h ∈ H}, we get∑

z∈p−1
x (gH)

f(z) =
∑

vLx∈{ghLx|h∈H}

vxK.

If we change the variable by u := g−1v, we obtain∑
uLx∈{hLx|h∈H}

guxK.

And since {hLx|h ∈ H} = H/Lx, we have

F (G/K, f,G/Lx, px, G/H) = ψx.

It follows from Yoshida’s Lemma 2.1.9 that every element of the Hom
set HomkG(kG/H,kG/K) is a k-linear combinations of the maps ψx (for
x ∈ [H\G/K]), and every morphism in the category permk(G) can be
obtained by additivity from those, since any G-set can be written as a
disjoint union of quotients of G. Hence, F is full.
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3. Consider the morphism in permk(G)(F (X)⊗k F (Y ), F (X × Y )):

strgFX,Y : F (X)⊗k F (Y )→ F (X × Y ) = k(X × Y )

given on the basis by
x⊗ y 7→ (x, y)

Being a bijection onG-invariant bases, this is an isomorphism in permk(G).
Now, consider the morphism strgF1 ∈ permk(G)(k, F (1)) to be the identity
of k. Checking that these two morphisms give a strong tensor structure
to F is straightforward.

This ends the proof.

2.2 Mackey functors

There are, to the author’s knowledge, at least four equivalent definitions of
Mackey functors. They were first introduced by Green in 1971 in [11], as an ax-
iomatic approach to group representation. We recall this definition for context,
but the definition we use in our work is historically the third one, and due to
Harald Lindner. For a more complete approach of Mackey functors, one could
read Bouc’s book [7], Webb’s paper [27], and the paper he wrote with Thévenaz
[26].

Definition 2.2.1 (Green’s classical definition). A Mackey functor for G over
k is a function

M : {subgroups of G} → k−Mod

together with k-linear morphisms

IHK : M(K)→M(H),

RHK : M(H)→M(K),

cg : M(H)→M(gH),

for all subgroups K ≤ H ≤ G and all g ∈ G, such that

• IHH , RHH , cH : M(H)→M(H) are the identity morphisms for all subgroups
H and all h ∈ H.

• RKJ ◦RHK = RHJ , for all subgroups J ≤ K ≤ H.

• IHK ◦ IKJ = IHJ , for all subgroups J ≤ K ≤ H.

• cg ◦ ch = cgh, for all g, h ∈ G.

• RgH
gK ◦ cg = cg ◦RHK , for all subgroups K ≤ H and g ∈ G.

• IgHgK ◦ cg = cg ◦ IHK , for all subgroups K ≤ H and g ∈ G.

• RHJ ◦ IHK =
∑
x I

J
J∩xK ◦ cx ◦RKJx∩K , where x runs through a set of repre-

sentatives of J\H/K for all subgroups J,K ≤ H.
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Definition 2.2.2 (Dress-Lindner’s definition). A Mackey functor is a k-linear
functor kSp(G)→ k−Mod. We denote Mackk(G) the category of these functors
with morphisms the natural transformations between them.

Remark 2.2.3. It is one of the main results of [18] to show that this definition
is equivalent to that of Green.

Proposition 2.2.4. The category Mackk(G) inherits a symmetric monoidal
structure via Day convolution.

Proof. This follows directly from what we know of the structure of kSp(G), see
2.1.4, and the Proposition 1.2.16 of our first chapter on Day convolution. An
explicit description of this structure can be found in [7], at 1.6.2. It can also be
obtained by application of the general description we give in 1.2.16.

Definition 2.2.5 (Classical definition of Green functors). A Mackey functor
M (for G over k) in the sense of Green is a Green functor if:

• for any subgroup H of G, M(H) has a k-algebra structure,

• for any subgroups K ≤ H of G and any g ∈ G, both RHK and cg are
k-algebra homomorphisms

• and the two Frobenius formulas

IHK (x ·RHK(y)) = IHK (x) · y and IHK (RHK(y) · x) = y · IHK (x)

are satisfied for all K ≤ H ≤ G.

And here is the alternative definition that we will use:

Definition 2.2.6. A Mackey functor R : kSp(G) → k−Mod is a Green func-
tor if it is a monoid object of the category Mackk(G) equiped with the Day
convolution product.

Proposition 2.2.7. The last two definitions coincide.

Proof. See the beginning of [7] for the equivalence of the different definitions
of Mackey and Green functors. Let us just say here that M(H) corresponds
to M(G/H), and that the restriction, conjugation and induction maps of the
classical definitions are obtained, respectively, from the spans

G/H

p

{{
G/K G/Hoo

G/H

xH 7→gxg−1gH

{{
G/gH G/Hoo

G/H

p

##
G/H G/Koo

by applying the functor M : kSp(G)→ k−Mod to them.
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Definition 2.2.8. It follows that a module over a Green functor R is simply
an object of the category R−ModMackk(G), as in Definition 1.1.15.

Definition 2.2.9 (Cohomological Mackey functors: classical definition). A
Mackey functor is said to be cohomological if for every pair of subgroups H ≤ K
of G the map IKH ◦RKH is multiplication by |K : H|.

Let us give an well-known example of a Green functor, which is also a coho-
mological Mackey functor:

Example 2.2.10 (The fixed point Green functor). In terms of the classical
definitions, the fixed point Green functor FPk is defined as follows. Its value at
H ≤ G is simply the k-algebra k for every subgroup. This forces the restrictions
and conjugations to be all identities. The induction map IHK : k → k is given
by multiplication by the index |H : K|.

The name ‘fixed point’ comes from the fact that this Mackey functor is the
special case with V = k of a family of Mackey functors FPV , for V any given
kG-module, which are such that FPV (H) = V H is the submodule of the H-fixed
points in V .

Definition 2.2.11 (Yoshida’s Cohomological Mackey functors). Cohomologi-
cal Mackey functors are k-linear functors permk(G) → k − Mod. We denote
CoMackk(G) the category of these functors with morphisms the natural trans-
formations between them.

Remark 2.2.12. It actually is the main theorem of Yoshida’s paper [28] that
the classically defined category of cohomological Mackey functors is isomorphic
to this one.

Proposition 2.2.13. This category CoMackk(G) of Definition 2.2.11 inherits
a tensor structure by Day convolution.

Proof. As before, this is a direct consequence of 1.2.16 and of what we know of
permk(G), that is, it is a symmetric tensor V-category.

Definition 2.2.14. Consider the tensor functor F : kSp(G) → permk(G) of
Proposition 2.1.10. As in Section 1.3, restriction along F is a lax monoidal
functor F ∗ : CoMackk(G) → Mackk(G) with respect to the Day convolution
tensor products, and therefore we obtain a commutative monoid A := F ∗(1) in
Mackk(G), that is, a commutative Green functor.

Lemma 2.2.15. The commutative Green functor of Definition 2.2.14 is iso-
morphic to the fixed point Green functor recalled in Example 2.2.10.

Proof. Note that for every G-set X we have an isomorphism

A(X) = permk(G)(k, FX) ∼= (kX)G ∼= k (G\X) (2.1)

where the first isomorphism identifies a k-linear map f : k → FX = kX with
the image of 1 ∈ k, which is a G-fixed point of kX. The second isomorphism
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is because we have a k-linear inclusion kG\X → (kX)G sending the orbit Gx
to
∑
y∈Gx y, and if

∑
x λxx ∈ kX is a G-invariant element then the coefficients

map x 7→ λx is constant on the G-orbits of X, so the inclusion is actually an
isomorphism (as it gives a bijection on bases).

We can now see explicitly what is the classical description of this Green
functor A = permk(k, F−). For a subgroup H ≤ G, it gives

A(H) = A(G/H) ∼= kG\G/H = k · {GeH}

as in the above isomorphism (2.1). Therefore this k-module is isomorphic to k,
by mapping 1 ∈ k to its unique basis element GeH.

Therefore, it follows that the algebra structure is simply k for each H, and
the restriction and conjugation maps are all the identity. It only remains to
check that for all subgroups K ≤ H ≤ G the induction maps IHK are given
by multiplication by |H : K|. As recalled in the proof of Proposition 2.2.7,
the map IHK : A(K) → A(H) is the image under the functor A of the span
G/H = G/H → G/K from G/K to G/H. By the definition of F , this maps
sends gK ∈ G/K to gH ∈ G/H. Since there are |H : K| different K-cosets
mapping to the same H-coset, by following the isomorphisms (2.1) we see that
this map is indeed multiplication by |H : K| as wished.

Remark 2.2.16. The monoidal unit of Mackk(G), given by the functor

1Mackk(G) := Spk(G)(1,−),

is known as the Burnside functor. Since F is full, and since F (1) ∼= k, the
following map gives an epimorphism from the Burnside functor to the the functor
of fixed points:

Spk(G)(1, X)→ permk(G)(k, F (X))

f 7→ F (f) ◦ strgF1

This is the unit map of the monoid A.

Corollary 2.2.17 (Cohomological vs ordinary Mackey functors). There is an
equivalence of tensor categories between:

• The category of modules over the fixed-point Green functor FPk, equipped
with its tensor product of modules;

• Representations of the category of permutation kG-modules, equipped with
the Day convolution product.

Moreover, both categories identify canonically with the full subcategory of ordi-
nary Mackey functors for G over k satisfying the ‘cohomological axiom’ (L ≤
H ≤ G):

indHL ◦ resHL = [H : L] · Id.



CHAPTER 2. COHOMOLOGICAL MACKEY FUNCTORS 49

Proof. This is a corollary of Theorem 1.3.13 and Proposition 2.1.10, that is,
this result is obtained by considering the rigid tensor V-categories C := kSp(G)
and D := permk(G), via precomposition by our tensor V-functor F : kSp(G)→
permk(G), giving

F ∗ : CoMackk(G)→ Mackk(G),

from which the situation studied in Chapter 1 follows. The identification of our
monoid A with the classical fixed point functor FPk is in Lemma 2.2.15

The moreover part follows now from the fact, proved in proposition 16.3
of [26] by very easy explicit calculations, that a Mackey module over the Green
functor FPk is the same thing as a Mackey functor satisfying the above-mentioned
extra relations.



Chapter 3

Bicategorical notions

This chapter is a short introduction to the bicategorical notions needed for
chapter four. It is based on the works of Bénabou [3] and Leinster [17].

We denote by 1 “the” category with exactly one object and one morphism.

Definition 3.0.1. A bicategory C consists of the following data subject to the
following axioms:

1. A collection of objects Ob(C), with elements denoted by capital roman
letters: X,Y, Z,...

2. A category C(X,Y ) for any ordered pair of given objects X and Y. The cat-
egory’s objects are denoted by small roman letters and its morphisms are
usually denoted by small greek letters, with the exception of the structural
maps described below. They are occasionally called 1-cells and 2-cells re-
spectively.

3. A “composition” functor for any ordered triple of objects (X,Y, Z):

◦C,XY Z : C(Y,Z)× C(X,Y )→ C(X,Z)

(g, f) 7→ g ◦C f
(β, α) 7→ β ∗C α

4. An “identity” functor for any X ∈ Ob(C):

IC,X : 1→ C(X,X)

5. A natural isomorphism called associator for any ordered quadruple (X,Y, Z, T )
of objects:

C(Z, T )× C(Y,Z)× C(X,Y )
Id×◦C

++
◦C×Id

ss
C(Y, T )× C(X,Y )

◦C ++

aXYZT⇒ C(Z, T )× C(X,Z)

◦Css
C(X,T )

50



CHAPTER 3. BICATEGORICAL NOTIONS 51

6. Natural isomorphims called right (or left) unitors for any pair of objects
X and Y

1× C(X,Y )

∼=

!!

IC,Y ×Id

yy

C(X,Y )× 1

∼=

!!

Id×IC,X

xx
⇒

lunX,Y

⇒
runX,Y

C(Y, Y )× C(X,Y ) ◦C
// C(X,Y ) C(X,Y )× C(X,X) ◦C

// C(X,Y )

7. Associators are subject to the pentagon axiom:

((k ◦C h) ◦C g) ◦C f
a∗Idg +3

a

t|

(k ◦C (h ◦C g)) ◦C f
a

#+
(k ◦C h) ◦C (g ◦C f)

a
&.

k ◦C ((h ◦C g) ◦C f)

Id∗aow
k ◦C (h ◦C (g ◦C f))

8. Associators are compatible with left and right unitors in the following way:

(g ◦C Id) ◦C f

run∗Id "*

a +3 g ◦C (Id ◦C f)

Id∗lunt|
g ◦C f

Remark 3.0.2.

• The subscripts are often omitted when context makes confusion unlikely.
We also write IdX instead of IC,X(1).

• The horizontal composition of 2-cells is a generalization of the horizontal
composition of natural transformations. The whiskering of a 2-cell α by a
1-cell g, which specializes to the case of natural transformations and func-
tors, is a 2-cell denoted g ∗C α and is defined as the horizontal composition
of 2-cells Idg ∗C α. One can do this on either or both sides.

• If the associators and unitors are all identities, then C is a 2-category, and
the axioms hold automatically.

• Every ordinary category, or 1-category, can be seen as a 2-category (and
thus as a bicategory) having only identity 2-cells.

• The axioms and the vocabulary resemble those for monoidal categories,
and indeed monoidal categories can be identified with bicategories having a
unique (unnamed) object. The coherence theorem for monoidal categories
is a special case of a similar theorem for bicategories.
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• Given a bicategory C, one can define the opposite bicategory Cop where the
1-cells are formally reversed. The bicategory Cco is obtained by formally
reversing the 2-cells instead of the 1-cells, and one could do both things
and obtain a bicategory Cop co.

Definition 3.0.3. A pseudofunctor F from a bicategory C to a bicategory D
consists of the following data subject to the following axioms:

1. A function Ob(C)→ Ob(D).

2. For any pair of objects X and Y , a functor

FX,Y : C(X,Y )→ D(FX,FY ).

3. For any triple of object X, Y , and Z, an invertible natural transformation

φF, (X,Y,Z) : ◦D(FY,Z × FX,Y )⇒ FX,Z(◦C).

4. For any object X, an invertible natural transformation

φF,X : ID,F (X) ⇒ FX,X ◦ IC,X .

5. For (f, g, h) ∈ Ob
(
C(X,Y ) × C(Y,Z) × C(Z, T )

)
, the following “hexagon

axiom” holds:

(Fh ◦C Fg) ◦D Ff
φ∗Id +3

aD

��

F (h ◦C g) ◦D Ff
φ +3 F ((h ◦C g) ◦C f)

F (aC)

��
Fh ◦D (Fg ◦D Ff)

Id∗φ
+3 Fh ◦D F (g ◦C f)

φ
+3 F (h ◦C (g ◦C f)).

6. For any f ∈ Ob(C(X,Y )), the following holds:

Ff ◦ IdF (X)
Id∗φX +3

runD

��

Ff ◦ F (IdX)
φ +3 F (f ◦ IdX)

F (runC)

��
Ff Ff

IdF (Y ) ◦ Ff
φY ∗Id

+3

lunD

KS

F (IdY ) ◦ Ff
φ
+3 F (IdY ◦ f)

F (lunC)

KS

Definition 3.0.4. An adjunction in a bicategory C, often written f a g, consists
of 1-cells f ∈ C(X,Y ) and g ∈ C(Y,X), together with 2-cells (the unit and counit
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of the adjunction), η : IdX ⇒ g ◦C f , and ε : f ◦C g ⇒ IdY , satisfying triangle
identities that generalize those the usual adjunctions in Cat satisfy:

f
runC f +3 f ◦C IdX

Idf∗Cη+3 f ◦C (g ◦C f)

(ε∗CIdf )◦Ca−1
C

��

g
lunC g +3 IdX ◦C g

η∗CIdg +3 (g ◦C f) ◦C g

(Idg∗Cε)◦CaC

��
f g

Definition 3.0.5. Let C be a bicategory. We call 1-truncation of C, and denote
τ1C, the category with objects Ob(C) and with morphisms between two objects
X and Y the isomorphism classes of 1-cells X → Y , that is, equivalence classes
of the 1-cells in C(X,Y ) for the equivalence relation f ∼ f ′ if and only if there
is an invertible 2-cell f ⇒ f ′ in C. It is immediate to see that this is a category.

We denote by [f ] the class in τ1C of a 1-cell f ∈ C.

Proposition 3.0.6. There is an obvious (pseudo)functor C → τ1C which is the
identity on objects and maps f 7→ [f ] on 1-cells and α 7→ Id on 2-cells, which is
initial among functors from C to 1-categories.

Definition 3.0.7. Let F : C → D be a pseudofunctor. We denote τ1F , and call
1-truncation of F , the functor τ1C → τ1D that maps every object X ∈ Ob(C)
to its image F (X) by F , and every class of 1-cell f in τ1C to the class of F (f)
in τ1D. It is immediate to see that this is a functor.



Chapter 4

Global Mackey functors and
precomposition

In this chapter, we describe a situation between the 2-category of finite groupoids
and the bicategory of bimodules that evokes the 1-categorical Universal Prop-
erty of span categories, see 2.1.8, which we used in chapter 2. Using a result of
Balmer and Dell’Ambrogio in [1], we construct a pseudofunctor R between the
bicategory of spans of groupoids and the bicategory of bimodules over groupoids,
and show that its 1-truncation τ1R is a functor F satisfying the hypothesis of
our first Theorem 1.3.13. This is the content of our second Main Theorem of
the introduction, that is Theorem 4.2.12. A corollary of this theorem is the
embedding of biset functors inside global Mackey functors. Both biset functors,
introduced by Bouc (see [6]), and global Mackey functors, introduced by Webb
(see [27]), can be seen as ways to extend the axiomatic study of finite groups
representations from the subgroups of a given ‘ambient’ group G (as with usual
Mackey functors) to all finite groups simultaneously. In [27], Webb already
states the above-mentioned inclusion. It is later proven by Ganter in [10] in
the same terminology, and independently by Nakaoka in [20], in a different set-
ting that is equivalent to ours. Our proof enhances theirs by also considering
the tensor structures. Moreover, it is simplified by using general arguments, in
parallel with those used for cohomological Mackey functor in Chapter 2.

Notation 4.0.1. Throughout, we make the hypothesis that groupoids are finite
and the value sets of bimodules are finite, but most of our constructions hold
under the weaker hypothesis that they are small. The finiteness is assumed
in order to fit the finite groups/ finite bisets context of the last section of the
chapter. Throughout, we will be using the basic notations and terminology of
bicategory theory as recalled in Chapter 3.

54
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4.1 Three bicategories of groupoids

In this section we introduce three bicategories, G, S and B, whose objects are
all finite groupoids. Here G is the usual 2-category of finite groupoids, S is a
bicategory of spans in it, and B a bicategory of bimodules (a.k.a. profunctors
or distributors).

Definition 4.1.1 (The 2-category of groupoids). By G, we denote the 2-category
with objects finite groupoids, 1-cells functors between them, and 2-cells the nat-
ural transformations.

Remark 4.1.2. Since the composition of functors and both the horizontal and
vertical composition of natural transformations in G are the classical ones, we
omit the subscripts.

Proposition 4.1.3. Equipped with usual compositions and identities for func-
tors and natural transformations, G is indeed a 2-category.

Proof. This is well known, so we only give an outline of the proof.

1. Let X and Y be two small groupoids, then G(X,Y ) is the category of
functors X → Y and natural transformations between them.

2. Let Z be a third small groupoid, then standard composition and the hor-
izontal composition of natural transformations give the composition func-
tor G(Y, Z) × G(X,Y ) → G(X,Z), whose functoriality is given by the
Interchange Law (β′ ◦ β) ∗ (α′ ◦ α) = (β′ ∗ α′) ◦ (β ∗ α)

3. Composition is associative on the nose, and the unitors are also identities.

Thus G is a 2-category.

Remark 4.1.4. Since a natural transformation is given by a collection of mor-
phisms in a groupoid, and since these are all invertible, every natural transfor-
mation is a natural isomorphism.

Definition 4.1.5. A 2-cell in G

b/a
p

!!
q

~~
B

b !!

⇐
Λ

A,

a||
C

is an iso-comma square over the cospan (b, C, a) if it has the following universal
property:
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• For every 2-cell δ : a ◦ f ⇒ b ◦ g as below, there is exactly one functor h
such that the following equality holds,

T

f

��

g

��

T

h

�� f

��

g

��

b/a

p
  

q
~~

B

b ��

⇐
δ

A

a
��

= B

b !!

⇐
Λ

A

a
}}

C C

that is,
q ◦ h = g ; p ◦ h = f ; δ = Λ ∗ h.

• For every pair of 2-cells τB : q ◦ h′ ⇒ q ◦ h and τA : p ◦ h′ ⇒ p ◦ h such
that:

T

⇐

h′

		q◦h

��

T

⇐

h

�� p◦h′





b/a

p
  

q
~~

b/a

p
  

q
~~

B

b !!

⇐ A

a
}}

= B

b !!

⇐ A

a
}}

C C

there exists a unique 2-cell τ : h′ ⇒ h such that q ∗ τ = τB and p ∗ τ = τA.

Proposition 4.1.6. The 2-category G has all iso-comma squares: given a

cospan B
b−→ C

a←− A, let b/a be the category with objects (x, y, λ) where y ∈
Ob(B), x ∈ Ob(A) and λ ∈ C(a(x), b(y)). Given two objects, the Hom set
b/a((x, y, λ), (x′, y′, λ′)) is the set of pairs (u, v) ∈ A(x, x′) × B(y, y′) such
that the obvious square commutes in C: λ′ ◦ a(u) = b(v) ◦ λ. Composition and
identities are induced by those in A and B. Then, we define p, q and Λ by

p(x, y, λ) = x p(u, v) = u,

q(x, y, λ) = y q(u, v) = v,

Λ(x,y,λ) = λ.

Proof. One can easily check that
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1. h : T → b/a is given by h(t) = (g(t), f(t), δt) and is the unique functor
yielding the correct diagram, and

2. given 1-cells h and h′ and 2-cells τA and τB as above, the natural trans-
formation τ : h′ ⇒ h with component at t ∈ Ob(T ) given by

τt = (τA,t, τB,t) ∈ b/a(h′(t), h(t))

is the only one doing the job.

This shows that b/a with Λ, p and q as defined give an iso-comma square.

Definition 4.1.7 (The bicategory of spans). We denote by S the following
bicategory.

1. The objects of S are finite groupoids: Ob(S) = Ob(G).

2. For any ordered pair of objects, the category S(X,Y ) whose objects are

spans of 1-cells (Y
f←− Z

g−→ X) in G, which will sometimes be written as
quintuplets (Y, f, Z, g,X), and whose morphisms are equivalence classes
of triples

[α, k, β] : (Y
f←− Z g−→ X)→ (Y

f ′←− Z ′ g
′

−→ X),

where k : Z → Z ′ is a functor and both α : f ⇒ (f ′ ◦ k) and β : g ⇒
(g′ ◦ k) are natural transformations. Given two such triples (α, k, β) and
(α1, k1, β1), we have

(α, k, β) ∼ (α1, k1, β1)

if and only if there exists a natural isomorphism ϕ : k ⇒ k1 such that the
following equalities hold in G:

(Idf ′ ∗ ϕ) ◦ α = α1 ; (Idg′ ∗ ϕ) ◦ β = β1

It is often more practical, even though it is somewhat missleading, to
deliver these data in the form of diagrams in G:

α
��

Z
g

&&

f

xx
k

��

β
��

Y X

Z
g′

88

f ′

ff

The identity morphism in S(X,Y )
(
(Y

f←− Z g−→ X), (Y
f←− Z g−→ X)

)
is the

class of the triple (Idf , IdZ , Idg), and composition of morphisms is

[α′, k′, β′] ◦S [α, k, β] = [(α′ ∗ k) ◦ α, k′ ◦ k, (β′ ∗ k) ◦ β],
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that is the following pasting:

α �#

Z
g

''

f

ww
k
�� β{�

Y
α′

�"

Z ′oo //

k′

��

β′

|�

X

Z ′′
g′′

77

f ′′

ff =
(α′∗k)◦α ��

Z
g

''

f

ww

��

(β′∗k)◦β��
Y X.

Z ′′
g′′

77

f ′′

gg

Since, by using the Interchange Law, one gets

((α′′ ∗ (k′ ◦ k)) ◦ (α′ ∗ k)) ◦ α = (((α′′ ∗ k′) ∗ k) ◦ (α′ ∗ k)) ◦ α
= (((α′′ ∗ k′) ◦ α′) ∗ k) ◦ α,

vertical composition is associative.

3. For any ordered triple of objects X,Y, Z, the composition functor

S(Y, Z)× S(X,Y )→ S(X,Z)

is induced by an iso-comma square as follows: it sends a pair of morphisms
of spans as on the left to the morphism of spans as on the right:(

(Z, b, U, g, Y ), (Y, f, T, a,X)
) � //

(
(α2,`,β2),(α1,k,β1)

)
��

|−>

(Z, b ◦ pU , g/f, a ◦ pT , X)

(α2∗pU ,c,β1∗pT )

��(
(Z, b′, U ′, g′, Y ), (Y, f ′, T ′, a′, X)

)
(Z, b′ ◦ pU ′ , g′/f ′, a′ ◦ pT ′ , X),

where c is the vertical functor given by the equality below,

g/f

k◦pT

��

`◦pU

��

g/f

c

�� k◦pT

��

`◦pU





g′/f ′

pU′

""

pT ′

}}
U ′

g′ !!

⇐ T ′

f ′}}

= U ′

""

⇐
Λ′

T ′,

||
Y Y

where the unnamed 2-cell is (β2 ∗ pU ) ◦ Λ ◦ (α−1
1 ∗ pT ).
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4. Given any object X, the identity functor IX has (X, IdX , X, IdX , X) for
image in S(X,X).

5. For any object of S(T,U) × S(U, V ) × S(W,V ), that is a triple of com-
posable spans, the associativity isomorphism is given by the Universal
Property of iso-comma squares.

a/b

~~   

b′/c

  ~~
A

a
!!t��

⇐
α

B

b′ !!

⇐
β

b}}

C

w   c
}}

T U V W

If one composes from left to right, i.e. by constructing a/b and the cor-
responding span first, one gets the following iso-comma square ρ, and a
unique functor r is defined by the equality below and the universal prop-
erty of iso-comma squares 4.1.5:

(a/b)/c

""{{

(a/b)/c

{{
r

�� ""
a/b

##

⇐
ρ

��

C

{{

= a/b

��

b′/c //

{{

C

{{
B // V B

β⇐
// V

If one composes from right to left, a unique functor ` emerges:

a/(b′/c)

##||

a/(b′/c) //

`

��||

b′/c

��
A

##

⇐
λ

b′/c

��zz

= A

##

a/b //oo B

zz
U Boo U

α⇐

considering the following diagrams, a functor h : a/(b′/c) → (a/b)/c
emerges:

a/b

��

a/(b′/c)
`oo

��
q

����

a/(b′/c) //

  

`

��

b′/c

��

a/(b′/c) //

��
h

��   

b′/c

��
B

  

b′/coo // C

��

= a/b

��   

⇐
β∗q

C

~~

= a/b

��   

(a/b)/coo // C

~~
V

β⇐

B // V B // V

ρ⇐
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The unlabelled 2-arrow is β ∗ q.
The same idea yields a functor h′ : (a/b)/c→ a/(b′/c):

(a/b)/c
r
//

��
p

����

b′/c

��

(a/b)/c)

r

  ��

a/b

��

(a/b)/c)oo

h′

��

r

  
A

��

a/boo // B

~~

= A

��

⇐
α∗p

b′/c

��~~

= A

  

a/(b′/c)oo // b′/c

��~~
U

α⇐

U Boo U

λ⇐

Boo

The unlabelled 2-arrow is α ∗ p.
Now, let’s check that h and h′ are strictly mutually invertible: by the first
property of iso-comma squares, the following equalities hold and yield
h ◦ h′ = Id(a/b)/c and h′ ◦ h = Ida/(b′/c).

(a/b)/c

h′

��

��

r
  

(a/b)/c

�� ��

a/(b′/c) //

l

��
h

��   

b′/c

��
a/b

  

(a/b)/coo // C

~~

= a/b

��

(a/b)/coo // C

��
V

ρ⇐

V

ρ⇐

a/(b′/c)

h

��

��

l

��

a/(b′/c)

�� ��

a/b

��

(a/b)/coo

r

  
h′

����
A

  

a/(b′/c)oo // b′/c

~~

= A

��

a/(b′/c)oo // b′/c

~~
U

λ⇐

U

λ⇐

Remark 4.1.8. • A proof that this is indeed a bicategory can be extracted
from the proof of theorem 3.0.3 of [12]. As the title of the paper suggests,
Hoffnung actually treats a more general case and proves there is more
structure than what we have found useful for this work. A number of
details about this bicategory can also be found in [1].
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• The necessity of taking classes of triples (α, k, β) as 2-morphisms, instead
of the triples themselves, appears when one wants to prove that (X =
X = X) is a unit for horizontal composition.

• One can check that a morphism of spans [α, k, β] is invertible if and only
if k is an equivalence of categories. This is the content of lemma 5.1.12 of
[1].

Definition 4.1.9 (The bicategory of bimodules). We denote by B the bicate-
gory defined by the following data.

1. The same class of objects as before, Ob(B) = Ob(G).

2. For any ordered pair of objects, a category B(X,Y ) with objects functors
Xop × Y → Set, where Set is the category of finite sets, and morphisms
natural transformations between them, with usual identities and compo-
sition.

3. For any three objects X, Y and Z, we get a composition functor

◦B : B(Y,Z)× B(X,Y )→ B(X,Z)

by mapping

• any pair of bimodules (ψ, φ) ∈ B(Y,Z)× B(X,Y ) to the functor

ψ ◦B ϕ : Xop × Z −→ Set

defined on objects by

(x, z) 7→ (ψ ◦B ϕ)(x, z) :=
(
ty∈Ob(Y ) ψ(y, z)× ϕ(x, y)

)
/ ≈

where the equivalence relation ≈ is that generated by

(v, ϕ(Id, b)(u)) ≈ (ψ(b, Id)(v), u),

with x ∈ X, y, y′ ∈ Y , z ∈ Z, u ∈ ϕ(x, y), v ∈ ψ(y′, z), and
b ∈ Y (y′, y). We denote by [v, u] the equivalence class of (v, u).
On morphisms, ψ ◦B ϕ is defined by

(a : x′ → x, c : z → z′) 7→ ([v, u] 7→ [ψ(Id, c)(v), ϕ(a, Id)(u)]) .

• any pair of natural transformations (β : ψ ⇒ ψ′, α : ϕ ⇒ ϕ′) to the
natural transformation β ∗B α : ψ ◦B ϕ ⇒ ψ′ ◦B ϕ′ with component
at (x, z) ∈ Ob(Xop × Z) given by

[v, u] 7→ [βy,z(v), αx,y(u)]

where v ∈ ψ(y, z) and u ∈ ϕ(x, y).
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4. Associators are given by the correspondence

[[w, v], u] 7→ [w, [v, u]]

5. The identity bimodule on X is its Hom functor X(−,−), and the right
and left unitors are given respectively by

runB(x, y) : [v, u] ∈ (ψ ◦X(−,−))(x, y) 7→ ψ(u, Id)(v) ∈ ψ(x, y)

and

lunB(x, y) : [v, u] ∈ (Y (−,−) ◦ ψ)(x, y) 7→ ψ(Id, v)(u) ∈ ψ(x, y) .

Note that this are invertible, by definition of the quotient: for instance
runB(x, y)−1 : u 7→ [u, Id].

Remark 4.1.10. This is indeed a bicategory, which actually is the opposite
bicategory of the one Borceux describes in ([5], 7.8.2). We chose here to call
bimodule what Bénabou and Borceux call distributor, and what others have
called a profunctor. Note that the composite bimodule ψ ◦B φ is given by a
coend in sets; compare the coends in k-modules which were used in Chapter 1.

4.2 The pseudofunctor of span realization

In this section we define a pseudofunctor R : S → B which “realizes” every span
of groupoids as a bimodule. Although not immediately obvious, our construction
is also related to Nakaoka’s “range” of a span, see [20].

Remark 4.2.1. In bicategory theory, most proofs are lengthy and require a lot
of notation. Since there are only so many letters we want to use, we will often
“reset” the notations from one proof to the other. We will try to make this clear
when it is not self explanatory.

In a way very similar to what we did when considering spans of G-sets,
we describe two ways of including the bicategory G in the bicategory S via
pseudofunctors.

Definition 4.2.2. Let ι∗ : G → S be the following pseudofunctor.

1. To any groupoid X, it associates itself ι∗(X) = X.

2. To a functor f ∈ G(X,Y ), it associates the span ι∗X,Y (f) = (Y, f,X, IdX , X).

3. To a natural transformation α : f ⇒ g ∈ G(X,Y ), it associates the
morphism of spans ι∗X,Y (α) = (α, IdX , IdIdX ).

4. For any groupoid X, the structure isomorphism φX : (X = X = X)
∼→

ι∗X,X (IdX) is simply the identity.
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5. For any triple of groupoids (X,Y, Z) and any functors f ∈ G(X,Y ) and
g ∈ G(Y,Z), the structure isomorphism of spans φf,g : ι∗Y,Z (g)◦ι∗X,Y (f)

∼→
ι∗X,Z (g ◦ f) is given by (g ∗Λ−1, pX , IdpX ), where Λ : f ◦pX ⇒ pY is given
by the iso-comma square from the composition:

g∗Λ−1

��

IdY /f
pX

''

g◦pY

ww pX

��

Z X

X

g◦f

gg

Proposition 4.2.3. ι∗ is indeed a pseudofunctor.

Proof. 1. For any groupoids X and Y , ι∗X,Y is a functor: one can easily check
that for any f, g, h : X → Y and any α : f ⇒ g, β : g ⇒ h, the following
hold

ι∗X,Y (β ◦ α) = ι∗X,Y (β) ◦ ι∗X,Y (α),

ι∗X,Y (Idf ) = Idι∗X,Y (f).

2. For any groupoid X, ι∗X,X (IdX) = IS,X(1) = (X, IdX , X, IdX , X).

3. The collection φX,Y,Z of all relevant morphisms of spans φf,g is a natural
transformation ◦S(ι∗Y,Z × ι∗X,Y )⇒ ι∗X,Z (◦G). Indeed, the following holds

for any pair of two cells α : f ⇒ f ′ and β : g ⇒ g′, with X
f−→ Y

g−→ Z:

φf ′,g′ ◦
(
◦S (ι∗Y,Z × ι∗X,Y )(β, α)

)
= (g′ ∗ Λ′−1, p′X , Idp′X ) ◦

(
β ∗ pY , c, IdpX

)
=
(
(g′ ∗ Λ′−1 ∗ c) ◦ (β ∗ pY ), p′X ◦ c, IdpX

)
(ι∗X,Z

(
◦G (β, α)

)
) ◦ φf,g

= (β ∗ α, IdX , Id) ◦ (g ∗ Λ−1, pX , IdpX )

=
(
(β ∗ α ∗ pX) ◦ (g ∗ Λ−1), pX , IdpX

)
,

where c is the unique relevant functor from IdY /f to IdY /f
′, obtained

from the first property of iso-comma squares, see 4.1.5:

IdY /f

pX

��

pY





IdY /f

c

�� pX

��

pY





IdY /f
′

p′X

##

p′Y

{{
Y ⇐

Λ◦(α−1∗pX)
X

f ′{{

= Y
⇐
Λ′

X

f ′{{
Y Y
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The functors p′X ◦ c and pX are equal by definition of c, and the left-
hand side natural transformations are equal because, using the Interchange
Law and the definition of c, we obtain respectively β ∗ (Λ′−1 ∗ c) and
β ∗ ((α ∗ pX) ◦ Λ−1), which are equal, again by definition of c.

4. We now need to check that the hexagon axiom holds. Be aware that we
“reset” the notation for this part of the proof.

Given three functors (f, g, h) ∈ G(X,Y ) × G(Y,Z) × G(Z, T ), and since
functor composition is associative on the nose, we have to check that the
following diagram is commutative(

(T
h←− Z = Z) ◦S (Z

g←− Y = Y )
)
◦S (Y

f←− X = X)

φg◦f,h◦S
(
ι∗Z,T (h)∗S φf,g

)
◦S aS

��
φf,h◦g◦S

(
φg,h∗S

(
ι∗X,Y (f)

))
��

(T
h◦g◦f←−−−− X = X).

In order to do so, we need to explicit the different 2-cells involved. We
begin by the right-hand side. First, consider the three following iso-comma
squares:

IdZ/g
pY

""
pZ

||

pY /f
qX

""
q

yy

IdY /f
p′X

##
p′Y

{{
Z

⇐
Λ

Y

g{{

; IdZ/g

pY %%

⇐
∆

X

f{{

; Y
⇐
Λ′

X.

fzz
Z Y Y

Then, the source of
(
φg,h ∗S

(
ι∗X,Y (f)

))
is the span

(T
h ◦ pZ ◦ q←−−−−−− pY /f

qX−−→ X),

and the target is the span

(T
h ◦ g ◦ p′Y←−−−−−− IdY /f

p′X−−→ X).

Hence, by definition of φg,h, the 2-cell corresponding to
(
φg,h∗S

(
ι∗X,Y (f)

))
is

h∗Λ−1∗q
��

pY /f
qX

''

h◦pZ◦q

ww
c

��

T X

IdY /f

p′X

77

h◦g◦p′Y

gg
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where c is the functor defined by the equality:

pY /f
pY ◦q

}}

qX

""
Y

IdY ""

⇐
∆

X

f||
Y

=

pY /f

pY ◦q





c

�� qX

��

IdY /f
p′X

##

p′Y

||
Y

IdY ##

⇐
Λ′

X.

f{{
Y

The 2-cell corresponding to φf,h◦g is

h∗g∗Λ′−1

��

IdY /f
p′X

''

h◦g◦p′Y

ww
p′X

��

T X

X

h◦g◦f

gg

by definition, and we can now compute the right hand side:

(h ∗ g ∗ Λ′−1, p′X , Idp′X ) ◦S (h ∗ Λ−1 ∗ q, c, IdqX )

=
(

(h ∗ g ∗ Λ′−1 ∗ c) ◦ (h ∗ Λ−1 ∗ q), p′X ◦ c, IdqX

)
=
(
h ∗
(
(g ∗ Λ′−1 ∗ c) ◦ (Λ−1 ∗ q)

)
, qx, IdqX

)
.

Now, on the left hand side, aS,(f,g,h) has

(T
h←− Z = Z) ◦S

(
(Z

g←− Y = Y ) ◦S (Y
f←− X = X)

)
for target. By considering the following iso-comma square

IdZ/(g ◦ p′Y )
q1
((

qZ

xx
Z

⇐
∆1

IdY /f,

g◦p′Yvv
Z

we can see that the span in question is (T
h◦qZ←−−− IdZ/(g ◦ p′Y )

p′X◦q1−−−−→ X).
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We define a functor a via the universal property of iso-comma squares:

pY /f

pZ◦q

}}

c

##
Z

⇐
Λ∗q

IdY /f

g◦p′Yzz
Z

=

pY /f

q

xx
a

�� c

��

IdZ/g

pZ

��

IdZ/(g ◦ p′Y )

q1

&&

qZ

xx
Z

⇐
∆1

IdY /f,

g◦p′Yxx
Z

and we obtain the 2-cell corresponding to aS,(f,g,h), that is:

pY /f
qX

((

h◦pZ◦q

vv
a

��

T X.

IdZ/(g ◦ p′Y )

p′X◦q1

66

h◦qZ

hh

The 2-cell ι∗Z,T (h) ∗Sφf,g is by definition (Idh, IdZ , IdIdZ )∗S(g∗Λ′−1, p′X , Idp′X ).
We use the universal property of the following iso-comma square in order

to define the relevant functor IdZ/(g ◦ p′Y )
d−→ IdZ/(g ◦ f):

IdZ/(g ◦ f)
rX

&&
rZ

xx
Z

⇐
∆′1

X,

g◦fww
Z

IdZ/(g ◦ p′Y )
qZ

yy

p′X◦q1

%%
Z ⇐

∆1◦(g∗Λ′∗q1)
X

g◦f
yy

Z

=

IdZ/(g ◦ p′Y )

qZ

��

d

�� p′X◦q1

��

IdZ/(g ◦ f)

rX

%%

rZ

yy
Z ⇐

∆′1
X.

g◦f
xx

Z
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Now, we can give the 2-cell corresponding to ι∗Z,T (h) ∗S φf,g, that is:

IdZ/(g ◦ p′Y )
p′X◦q1

((

h◦qZ

vv
d

��

T X.

IdZ/(g ◦ f)

rX

66

h◦rZ

hh

We now have all the elements for computing the left hand side:

φg◦f,h ◦S
(
ι∗Z,T (h) ∗S φf,g

)
◦S aS,(f,g,h)

= ((h ∗∆′1)−1, rX , IdrX ) ◦S (Idh◦qZ , d, IdrX◦d) ◦S (Idh◦pZ◦q, a, IdqX )

=
(

(h ∗∆′1)−1 ∗ d, rX ◦ d, IdrX◦d

)
◦S (Idh◦pZ◦q, a, IdqX )

=
(

(h ∗∆′1)−1 ∗ d ∗ a, qX , IdqX

)
.

In order to check that the left hand side of our diagram is equal to the
right hand side, we now only need to check that h∗((g∗Λ′−1∗c)◦(Λ−1∗q))
and (h∗∆′1)−1 ∗d∗a are the same natural isomorphisms. We do so, using
the definition of d for the first step, and the definition of a for the last
one:

h ∗ (∆′1 ∗ d)−1 ∗ a = h ∗
(
∆1 ◦ (g ∗ Λ′ ∗ q1)

)−1 ∗ a
= h ∗

(
(g ∗ Λ′−1 ∗ q1) ◦∆−1

1

)
∗ a

= h ∗
(
(g ∗ Λ′−1 ∗ q1 ∗ a) ◦ (∆−1

1 ∗ a)
)

= h ∗
(
(g ∗ Λ′−1 ∗ c) ◦ (Λ−1 ∗ q)

)
.

5. The two remaining axioms hold, since for f ∈ G(X,Y ), runS,f = φIdX ,f

and lunS,f = φf,IdY , and all other arrows are identities.
This ends the proof of the pseudo functoriality of ι∗.

Definition 4.2.4. Let ι∗ : Gop → S be the pseudofunctor defined as follows.

1. To any groupoid X, it associates a groupoid ι∗(X) = X.

2. To a functor f ∈ G(X,Y ), it associates a span ι∗X,Y (f) = (X, IdX , X, f, Y ).

3. To a natural transformation α : f ⇒ g ∈ G(X,Y ), it associates a mor-
phism of spans ι∗X,Y (α) = (IdIdX , IdX , α).

4. For any groupoid X, let φ∗X = Idι∗X,X(IdX).
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5. For any triple of groupoids (X,Y, Z) and any functors f ∈ G(X,Y ) and
g ∈ G(Y,Z), a morphism of spans φ∗f,g : ι∗Y,X(f) ◦ ι∗Z,Y (g) → ι∗Z,X(g ◦ f)
given by (IdpX , pX , g∗Λ), where Λ : pY ⇒ f ◦pX is given by the iso-comma
square from the composition:

f/IdY
pX

ww

g◦pY

''pX

��

g∗Λ
�


X Z

X

g◦f

77

Proposition 4.2.5. ι∗ is indeed a pseudofunctor.

Proof. One can check directly that this is the case, as we did in the proof of
4.2.3. Another method is to consider the following evident pseudofunctor:

(−)∨ : Sop → S

X∨ = X

(Y
g←− U f−→ X)∨ = (X

f←− U g−→ Y )

(β, k, α)∨ = (α, k, β)

Given two composable spans (Y
g←− U

f−→ X) and (Z
k←− V

h−→ Y ), the

structural morphism φ(−)∨ (X,Y,Z) sends (Y
g←− U f−→ X)∨ ◦S (Z

k←− V h−→ Y )∨ to

the span (X
f◦pU←−−− h/g k◦pV−−−→ Z) via g/h→ h/g, (v, u, λ) 7→ (u, v, λ).

Then, one can check that (−)∨ ◦ ι∗ = ι∗, which ends the proof.

Now, we want to do something similar with the bicategory B of bimodules:
we are going to send G to B in two ways, one covariant and one contravariant.
The two first families of examples that come to one’s mind when reading the

definition of bimodules may be, given a functor X
f−→ Y :

Y (f−,−) : Xop × Y → Set and Y (−, f−) : Y op ×X → Set .

We show that these families induce two pseudofunctors R∗ : G → B and R∗ :
Gop → B. It is also natural to expect an adjunction relation inside the bicategory
B of bimodules between these bimodules, and we prove it is as expected.

Definition 4.2.6. Let R∗ : G → B be the following pseudofunctor:

1. To any groupoid X, associate R∗(X) = X.

2. To any functor f ∈ G(X,Y ), associate R∗(f) := Y (f−,−).
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3. To any natural transformation α : f ⇒ f ′ ∈ G(X,Y ), associate the natural
transformation R∗(α) : R∗(f)⇒ R∗(f ′), given at (x, y) by

u ∈ Y (fx, y) 7→ u ◦ α−1
x ∈ Y (f ′x, y).

4. Given three groupoids X, Y , and Z, the structure isomorphism φR∗ (X,Y,Z)

for two functors f ∈ G(X,Y ) and g ∈ G(Y,Z) is the natural transformation
R∗(g) ◦B R∗(f) ⇒ R∗(g ◦ f) with component at (x, z) ∈ Xop × Z given
by

φR∗ (g,f)(x, z) : (R∗(g) ◦B R∗(f))(x, z)→ R∗(g ◦ f)(x, z)

[v, u] 7→ v ◦ g(u).

5. Given any groupoid X, the structure isomorphism

φR∗X : X(IdX−,−)→ X(−,−)

is given by the identity.

Proposition 4.2.7. R∗ : G → B is indeed a pseudofunctor.

Proof. 1. It is fairly obvious that Y (f−,−) is a bimodule Xop × Y → Set
and that − ◦ α−1

x gives a natural transformation

R∗(α) : Y (f−,−)⇒ Y (f ′−,−).

2. We prove that for any two groupoids X and Y , we have a functor:

R∗X,Y : G(X,Y ) → B(X,Y ).

• Let α : f ⇒ f ′ and α′ : f ′ ⇒ f ′′ be in G(X,Y ). Since, for any
x ∈ Ob(X), y ∈ Ob(Y ) and u ∈ Y (fx, y), we have

u ◦ (α′ ◦ α)−1
x = u ◦ α−1

x ◦ α′x−1,

it is clear that R∗X,Y (α′ ◦ α) = R∗X,Y (α′) ◦ R∗X,Y (α).

• It is clear that R∗X,Y (Idf ) = IdY(f−,−).

3. We verify that φR∗ (X,Y,Z) is well-defined. Consider functors f : X → Y
and g : Y → Z, four objects x ∈ Ob(X), z ∈ Ob(Z) and y, y′ ∈ Ob(Y ),
and three morphisms u ∈ Y (fx, y′), b ∈ Y (y′, y) and v ∈ Z(gy, z). We
recall that according to the definition of ◦B, we have equalities

[v, b ◦ u] = [v ◦ g(b), u] ∈
(
R∗(g) ◦B R∗(f)

)
(x, z),

and these relations define the quotient set on the right-hand side. Hence,
to prove that φR∗ (f,g)(x, z) is well defined, it suffices to check that

φR∗ (f,g)(x, z)([v, b ◦ u]) = φR∗ (f,g)(x, z)([v ◦ g(b), u]),
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which is immediate. Furthermore, we can see that φR∗ (f,g)(x, z) is always

an isomorphism: indeed, one can check that (g ◦ f(x)
a−→ z) 7→ [a, Idfx] is

an inverse isomorphism, since we always have [v, u] = [v ◦ g(u), Idfx].

We now check the naturality of φR∗ (X,Y,Z), that is, for any pair of 2-cells
α : f ⇒ f ′ ∈ G(X,Y ) and β : g ⇒ g′ ∈ G(Y,Z), the commutativity of the
square

R∗(g) ◦B R∗(f)
φR∗ (f,g) //

R∗(β)∗BR∗(α)

��

R∗(g ◦ f)

R∗(β∗α)

��
R∗(g′) ◦B R∗(f ′)

φR∗ (f′,g′)

// R∗(g′ ◦ f ′).

Let v ∈ Z(gy, z) and u ∈ Y (fx, y). One path sends [v, u] to v ◦ g(u) ◦ (β ∗ α)−1
x

and the other sends [v, u] to v ◦β−1
y ◦ g′(u ◦α−1

x ): it remains to check that
those two morphisms in Z(g ◦ f(x), z) are equal:

v ◦ β−1
y ◦ g′(u) ◦ g′(α−1

x ) = v ◦ g(u) ◦ β−1
fx ◦ g

′(α−1
x )

= v ◦ g(u) ◦ (β ∗ α)−1
x .

4. The “hexagon axiom” holds: indeed, given X
f−→ Y

g−→ Z
h−→ T ∈ G, the

commutativity of (
T (h−,−) ◦B Z(g−,−)

)
◦B Y (f−,−)

φR∗ g◦f,h◦B
(

IdR∗(h)∗B φR∗ f,g
)
◦B aB

��
φR∗ f,h◦g◦B

(
φR∗ g,h∗B IdR∗(f)

)
��

T (h ◦ g ◦ f−,−).

boils down to checking that w ◦ h(v) ◦ (h ◦ g)(u) = w ◦ h(v ◦ g(u)), which
is immediate by functoriality of h.

5. It is immediate from the definitions that the last two axioms hold.
This ends the proof that R∗ is a pseudofunctor.

Proposition 4.2.8. For every functor f ∈ G(X,Y ), there is an adjunction
R∗(f) a R∗(f), where R∗(f) := Y (−, f−) : Y op ×X → Set, inside the bicate-
gory B in the sense of 3.0.4.

Proof. Let f ∈ G(X,Y ) be a functor.

• Let (x, x′) ∈ Ob(Xop ×X). We define a map ηf (x, x′):

X(x, x′)→
(
R∗(f) ◦B R∗(f)

)
(x, x′)

a 7→ [Idfx, f(a)−1].
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We set ηf := {ηf (x, x′)|(x, x′) ∈ Xop ×X}, and check that it is a 2-cell
of B(X,X): for any two morphisms b ∈ X(x1, x) and b′ ∈ X(x′, x′1), the
following square is commutative

X(x, x′)

X(b,b′)

��

ηf (x,x′) //
(
R∗(f) ◦B R∗(f)

)
(x, x′)(

R∗(f)◦BR∗(f)
)

(b,b′)

��
X(x1, x

′
1)

ηf (x1,x
′
1)

//
(
R∗(f) ◦B R∗(f)

)
(x1, x

′
1),

since [Idf(x1), f(b′ ◦ a ◦ b)−1] = [f(b)−1, f(a)−1 ◦ f(b′)−1] in the quotient(
R∗(f) ◦B R∗(f)

)
(x1, x

′
1), which is immediate.

• Let y, y′ ∈ Ob(Y ), we define a map εf (y, y′):(
R∗(f) ◦B R∗(f)

)
(y, y′)→ Y (y, y′)

[v, u] 7→ (v ◦ u)−1

We set εf := {εf (y, y′)|(y, y′) ∈ Y op × Y }, and check that it is a 2-cell
of B(Y, Y ): for any two morphism c ∈ Y (y1, y) and c′ ∈ Y (y′, y′1), the
following square is commutative

(
R∗(f) ◦B R∗(f)

)
(y, y′)(

R∗(f)◦BR∗(f)
)

(c,c′)

��

εf (y,y′) // Y (y, y′)

Y (c,c′)

��(
R∗(f) ◦B R∗(f)

)
(y1, y

′
1)

εf (y,y′)

// Y (y1, y
′
1),

since
(
(c−1 ◦ v) ◦ (u ◦ c′−1)

)−1
= c′ ◦ (v ◦ u)−1 ◦ c.

• Now let us check that ηf and εf satisfy the triangular equalities for an
adjunction. For any (x, y) ∈ Ob(Xop × Y ), consider the following compo-
sition of maps:

R∗(f)(x, y)
run−1

−−−−→ (R∗(f) ◦B X(−,−))(x, y) a 7→ [a, Idx]

Id∗Bηf−−−−→ (R∗(f) ◦B (R∗(f) ◦B R∗(f)))(x, y) 7→ [a, [Idfx, Idfx]]
a−→ ((R∗(f) ◦B R∗(f)) ◦B R∗(f))(x, y) 7→ [[a, Idfx], Idfx]

εf∗BId−−−−→ ((−,−) ◦B R∗(f))(x, y) 7→ [a, Idfx]

lun−−→ R∗(f)(x, y) 7→ a

The second condition is equally straightforward to check, and ends the proof.

Definition 4.2.9. Let R∗ : Gop → B be the following pseudofunctor:
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1. To any groupoid X, associate itself.

2. To any functor f ∈ G(X,Y ), associate R∗(f) := Y (−, f−).

3. To any natural transformation α : f ⇒ f ′ ∈ G(X,Y ), associate the natural
transformation R∗(α) : R∗(f)⇒ R∗(f ′), given at (y, x) by

u ∈ Y (y, fx) 7→ αx ◦ u.

4. Given any three groupoidsX, Y , and Z, a natural transformation φR∗ (Z,Y,X),
such that given two functors f ∈ G(X,Y ) and g ∈ G(Y, Z) and objects
z ∈ Z and x ∈ X, we get a map

φR∗ (g,f)(z, x) : (R∗(f) ◦B R∗(g))(z, x)→ R∗(g ◦ f)(z, x),

[u, v] 7→ g(u) ◦ v.

5. Given a groupoid X, the functor φR∗X : X(−, IdX−) → X(−,−) is the
identity.

Proposition 4.2.10. R∗ : Gop → B is a pseudofunctor.

Proof. The proof is similar as for R∗. Alternatively, this can be deduced from
the fact that R∗ : G → B is a pseudofunctor and that for each f we have an
adjunction R∗(f) a R∗(f): by taking mates under these adjunctions of the
structure isomorphisms of the pseudo-functor R∗, we obtain structure isomor-
phisms for a pseudo-functor R∗ : Gop co → B sending the 1-cell f to the right
adjoint R∗(f) (see for example [1, Remark A.2.10]). Then, after precomposing
with α 7→ α−1 (inversion of 2-cells) one can check that we obtain precisely the
pseudofunctor R∗ : Gop → B described above in 4.2.9.

We are going to use the following general construction, which is treated in
details and greater generality in [1, Ch. 5].

Proposition 4.2.11. Let C be any bicategory, and suppose we have two pseudo-
functors F∗ and F∗ on groupoids as follows

G

ι∗

��

F∗

��
S F // C

Gop
ι∗

OO

F∗

AA

(4.1)

such that:

• F∗ and F∗ coincide on objects: F∗(X) = F∗(X) for all X ∈ Ob(G).
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• For every f : X → Y in G we have an adjunction (F∗(f) a F∗(f), ηf , εf )
in C. Assume moreover that all this data satisfies the Beck-Chevalley
condition, namely that every iso-comma square in G

g/f
pX

!!
pY

}}
Y

g ""

⇐
Λ

X

f||
Z

induces an invertible 2-cell Λ̃ in B as follows:

g/f

⇓Λ̃

F∗(pX)

!!

==F∗(pY )

Y

F∗(g) !!

X==

F∗(f)

Z

:=

X

g/f
⇒
εpX

F∗(pX)
==

Y

F∗(pY )
==

⇒

F∗(Λ−1)
X

aa

⇒
ηg

Z
F∗(f)

==aa

Y
F∗(g)

==

• For simplicity, we also assume that the structural isomorphisms φF∗X and
φF∗X are the identity: IdF∗X = F∗(IdX) and IdF∗X = F∗(IdX).

Then, there exists a unique pseudo-functor F coinciding with F∗ and F∗ on
objects, mapping spans as follows

( Y U
goo f // X ) 7→ F∗(g) ◦ F∗(f)

and such that: F ◦ ι∗ = F∗ and F ◦ ι∗ = F∗.

Proof. This follows as a special case of [1, Theorem 5.2.1]. Let us give some
explanations. Beware that conventions here and in loc. cit. are a little different:
in particular, the direction of the 2-cell in iso-comma squares is opposite.

Here we apply the theorem with a few adjustments. First, we must choose
(in the notations of loc. cit.) J = G = G, which is possible by [1, Remark
5.1.2]. Second, in loc. cit. the target C is assumed to be a strict 2-category, but
this can be easily extended to a bicategory by the strictification theorem (see
Remark 3.0.2); see [1, § 5.3] for details.

In loc. cit., the pseudofunctor F is constructed from the pseudofunctor F∗
together with a choice of adjunctions (F∗(f) a F∗(f), ηf , εf ) (there noted F!(f)
instead of F∗(f)), and the uniqueness of F is only up to the choice of these
adjunctions. Since here we give the adjunctions as part of the data, the resulting
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pseudo-functor F is unique. Moreover, the two triangles in (4.1) commute
strictly, rather than just up to an isomorphism, because we have assumed that
the unit structure isomorphisms of F∗ and F∗ are identities.

We are now ready to give the main construction of this chapter:

Theorem 4.2.12. There exists a unique pseudofunctor R : S → B from the
span bicategory (Definition 4.1.7) to the bimodule bicategory (Definition 4.1.9)
of finite groupoids, such that

• it sends every finite groupoid X to itself,

• it sends a span Y
g←− U f−→ X to the bimodule R∗(g) ◦B R∗(f),

• and R◦ι∗ = R∗ and R◦ι∗ = R∗, where R∗ and R∗ are the pseudofunctors
of 4.2.6 and 4.2.9.

Remark 4.2.13. Note that in order to horizontally compose spans of groupoids
we use iso-comma squares, not pullbacks of groupoids. This is the correct com-
position that must be used in order to obtain the pseudo-functoriality of R.
Note that Hoffnung already foresaw this, although he provided no proof yet
(see Claim 13 in [13]).

Proof. It suffices to specialize Proposition 4.2.11 to the pseudofunctors R∗ and
R∗ and the adjunctions described in the proof of Proposition 4.2.8, once we
have verified the Beck-Chevalley condition for this data.

Let us do the latter. Consider the following iso-comma square in G:

g/f
pX
""

pY

}}
Y

g ""

⇐
Λ

X.

f{{
Z

It induces the following diagrams in B, where the left square is obtained by
applying R∗ to the iso-comma square:

X

g/f
⇒
εpX

==

Y

==

⇒

R∗(Λ−1)
X

aa

⇒
ηg

Z

==aa

Y

==

and, via composition,

g/f

⇓Λ̃

R∗(pX)

!!

==R∗(pY )

Y

R∗(g) !!

X.<<

R∗(f)

Z
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Concretely and very explicitly, the component at (y, x) ∈ Ob(Y op ×X) of this
natural transformation

Λ̃ :
(
R∗(pX) ◦B R∗(pY )

)
⇒
(
R∗(f) ◦B R∗(g)

)
: Y op ×X −→ Set

is given step by step below. Let t1 = (x1, y1, λ1) ∈ Ob(g/f):(
R∗(pX) ◦B R∗(pY )

)
(y, x)→

(
R∗(pX) ◦B (R∗(pY ) ◦B Y (−,−))

)
(y, x)

[v ∈ X(x1, x), u ∈ Y (y, y1)] 7→ [v, [u, Idy]]

→
(
R∗(pX) ◦B (R∗(pY ) ◦B (R∗(g) ◦B R∗(g))

)
(y, x)

compose with the unit η : 7→ [v, [u, [Idgy, Idgy]]]

→
(
R∗(pX) ◦B ((R∗(pY ) ◦B R∗(g)) ◦B R∗(g))

)
(y, x)

7→ [v, [[u, Idgy], Idgy]]

→
(
R∗(pX) ◦B (R∗(g ◦ pY ) ◦B R∗(g))

)
(y, x)

7→ [v, [g(u), Idgy]]

→
(
R∗(pX) ◦B (R∗(f ◦ pX) ◦B R∗(g))

)
(y, x)

compose with R∗(Λ−1) : 7→ [v, [λ−1
1 ◦ g(u), Idgy]]

→
(
R∗(pX) ◦B ((R∗(pX) ◦B R∗(f)) ◦B R∗(g))

)
(y, x)

7→ [v, [[Idx1
, λ−1

1 ◦ g(u)], Idgy]]

→
(

(R∗(pX) ◦B (R∗(pX) ◦B R∗(f))) ◦B R∗(g)
)
(y, x)

7→ [[v, [Idx1 , λ
−1
1 ◦ g(u)]], Idgy]

→
(

( (R∗(pX) ◦B R∗(pX)) ◦B R∗(f)) ◦B R∗(g)
)
(y, x)

7→ [[[v, Idx1
], λ−1

1 ◦ g(u)], Idgy]

→
(

(X(−,−) ◦B R∗(f)) ◦B R∗(g)
)
(y, x)

compose with the counit ε : 7→ [[v−1, λ−1
1 ◦ g(u)], Idgy]

→
(
R∗(f) ◦B R∗(g)

)
(y, x)

7→ [f(v) ◦ λ−1
1 ◦ g(u), Idgy]

where the unnamed maps are the evident associators and unitors of B and
pseudofunctoriality isomorphisms of R∗, as necessary.

We need to prove this map is an isomorphism. We recall that

Λ : f ◦ pX ⇒ g ◦ pY

is an iso-comma square, with g/f the category with objects triples

(x, y, λ) with x ∈ Ob(X), y ∈ Ob(Y ), λ ∈ Z(f(x), g(y))

and given two objects t1 = (x1, y1, λ1) and t2 = (x2, y2, λ2), the hom-set
(g/f)(t1, t2) is the set of pairs (a, b) ∈ X(x1, x2)× Y (y1, y2) such that

λ2 ◦ f(a) = g(b) ◦ λ1.
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Now, let [x1
v−→ x, y

u−→ y1] and [x2
v′−→ x, y

u′−→ y2] be elements of
(
R∗(pX)◦B

R∗(pY )
)
(y, x), and assume that

[f(v) ◦ λ−1
1 ◦ g(u), Idgy] = [f(v′) ◦ λ−1

2 ◦ g(u′), Idgy] ∈
(
R∗(f) ◦B R∗(g)

)
(y, x),

which is equivalent to

f(v) ◦ λ−1
1 ◦ g(u) = f(v′) ◦ λ−1

2 ◦ g(u′),

since any morphism in Z giving a relation between the two pairs has to be Idgy.
Let’s show that this implies that [v, u] = [v′, u′] ∈

(
R∗(pX)◦BR∗(pY )

)
(y, x). In-

deed, the latter is equivalent to the existence of a morphism (a, b) ∈ (g/f)(t1, t2)
such that:

x1

a

��

v // x ; y
u //

u′ ��

y1

b

��
x2

v′

>>

y2

SinceX and Y are groupoids, there is no choice but a := v′−1◦v and b := u′◦u−1,
and it only remains to check that (v′−1 ◦ v, u′ ◦ u−1) is a morphism in g/f , i.e.
that

λ2 ◦ f(v′−1 ◦ v) = g(u′ ◦ u−1) ◦ λ1,

which by functoriality of f and g is exactly the condition above.
Hence, Λ̃(y, x) is injective.

For any z ∈ Ob(Z) and [z
c−→ f(x), g(y)

d−→ z] ∈
(
R∗(f) ◦B R∗(g)

)
(y, x),

note that (c ◦ d)−1 is a morphism in Z(f(x), g(y)), and as a consequence t :=
(x, y, (c ◦ d)−1) ∈ Ob(g/f), and

Λ̃(y, x)
(
[pX(t)

Idx−−→ x, y
Idy−−→ pY (t)]

)
= [c, d].

Hence, Λ̃(y, x) is surjective, Λ̃ is an invertible 2-cell, and the Beck-Chevalley
condition holds.

4.3 The 1-truncated picture

We remind the reader that our goal is to apply our first Theorem 1.3.13 to this
situation. In order to do so, we have to consider the 1-truncation (see 3.0.5)
of the bicategories S and B, and check that those categories and the functor
τ1R carry enough structure so that the theorem applies. We recall that an iso-
morphism of 1-cells in S is the class of a relevant triple (α, k, β) where k is an
equivalence of category, hence τ1S is the category where objects are finite mor-
phisms and the isomorphism classes of spans for this definition of isomorphisms.

Lemma 4.3.1. The functor τ1R : τ1S → τ1B is full.



CHAPTER 4. GLOBAL MACKEY FUNCTORS 77

Proof. Let X and Y be finite groupoids, and ψ : Xop × Y → Set be an object
of B(X,Y ). We define a groupoid Qψ as follows:

Ob(Qψ) =
⊔

(x,y)∈Xop×Y

{(x, y, u)|u ∈ ψ(x, y)},

Qψ
(
(x, y, u), (x′, y′, u′)

)
= {(a, b) ∈ X(x′, x)× Y (y, y′)|ψ(a, b)(u) = u′}.

Composition and identities of Qψ come from that of X and Y , and this is

clearly a groupoid. Now, we define a span Q(ψ) := (Y
qY←−− Qψ

qX−−→ X) by
defining the two functors qY ((x, y, u)) = y, qY ((a, b)) = b and qX(x, y, u)) = x,
qX((a, b)) = a−1 (beware of the inverse!).

The image of this span by our pseudofunctor R, defined at 2.1.10, is isomor-
phic to ψ in B: indeed, given any x ∈ Ob(X) and y ∈ Ob(Y ), we consider the
following map (

R∗(qY ) ◦B R∗(qX)
)
(x, y)→ ψ(x, y) (4.2)

[qY ((x1, y1, u1))
g−→ y, x

f−→ qX((x1, y1, u1))] 7→ ψ(f, g)(u1)

Surjectivity is obvious, since ∀u ∈ ψ(x, y), u = ψ(Idx, Idy)(u). We now prove
the injectivity.

Given two elements of R(Q(ψ))(x, y)

[qY ((x1, y1, u1))
g−→ y, x

f−→ qX((x1, y1, u1))]

and

[qY ((x2, y2, u2))
g′−→ y, x

f ′−→ qX((x2, y2, u2))],

assume ψ(f, g)(u1) = ψ(f ′, g′)(u2). This implies that

ψ(f ′−1, g′−1)
(
ψ(f, g)(u1)

)
= u2,

meaning that (f ◦ f ′−1, g′−1 ◦ g) is a morphism in Qψ
(
(x1, y1, u1), (x2, y2, u2)

)
,

and via this morphism [g, f ] = [g′, f ′] ∈ R(Q(ψ))(x, y), hence the map is injec-
tive.

Finally, given morphisms x′
a−→ x ∈ X and y

b−→ y′ ∈ Y , we need to check
that the following square is commutative:

R(Q(ψ))(x, y) //

R(Q(ψ))(a,b)

��

ψ(x, y)

ψ(a,b)

��
R(Q(ψ))(x′, y′) // ψ(x′, y′)

For relevant (x1, y1, u1) and [g, f ], the equality ψ(b◦g, f◦a)(u1) = ψ(a, b)
(
ψ(f, g)(u1)

)
holds, and this shows naturality in (x, y) ∈ Xop × Y of the isomorphism (4.2).

This proves that, for any bimodule ψ, there exists a span Q(ψ) such that

τ1R([Q(ψ)]) = ψ in τ1B.

Hence, τ1R is full.
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Remark 4.3.2. The construction of Qψ and Qψ is similar to what Bénabou
wrote in [4], using categories of elements. Bénabou has considered the similar-
ities between spans and bimodules from the moment he defined bicategories,
but since back then he used pullbacks for horizontal composition of spans, the
comparison he made could not be functorial, as we already remarked before.

Definition 4.3.3 (Elements of the additive structures). Let X1 and X2 be two
objects in G. We define X1 t X2 to be the groupoid with objects Ob(X1) t
Ob(X2), with obvious morphisms, identities and composition. It follows from
this definition that for j ∈ {1, 2}, a functor iGXj : Xj → X1 t X2 is given by
the obvious embedding. If notation is somewhat ambiguous, we trust context
will always be explanatory. Binary coproducts in G are given by the triples
(X1 tX2, iGX1 , iGX2).

For each j ∈ {1, 2}, we now define two 1-cells in S,

iSXj := ι∗(iGXj ) = (X1 tX2

iGXj←−−− Xj = Xj)

and

pSXj := ι∗(iGXj ) = (Xj = Xj

iGXj−−−→ X1 tX2),

and two 1-cells in B,

iBXj := R∗(iGXj ) = (X1 tX2)(iGXj−,−)

and
pBXj := R∗(iGXj ) = (X1 tX2)(−, iGXj−).

Proposition 4.3.4. The category τ1S is semi-additive.

Proof. The empty groupoid, that we denote 0, is the zero object of τ1S: indeed,

a span from X to 0 has to be (0 = 0
!−→ X), and a span from 0 to X has to

be (X
!←− 0 = 0). For any two groupoids X and Y , write 0XY := (Y

!←− 0
!−→

X). There is a commutative monoid structure on every hom-set of τ1S that is
induced by coproducts in G: indeed, given two spans, we can define a third span
via

(Y, g1, U1, f1, X) + (Y, g2, U2, f2, X) := (Y, g1 t g2, U1 t U2, f1 t f2, X),

and 0XY is the neutral element of (τ1S(X,Y ),+). Commutativity is obvious,
and it is easy to check the well defineness of +, as well as the other axioms.
Furthermore, we claim that the 1-cells in S described in 4.3.3 give biproducts
in τ1S.

The iso-comma category induced by the composition pSX1 ◦S iSX2 is the
empty groupoid. From this, it is obvious that

pSX1
◦S iSX2

= 0X2X1

pSX2
◦S iSX1

= 0X1X2
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The composed span pSX1 ◦S iSX1 = (X1 ← (iGX1/iGX1) → X1) is isomorphic
in B to the identity span for X1 via the morphism of spans

(Id, (x, x′, λ) 7→ x,Λ).

Indeed, it is straightforward to check that this functor is an equivalence of
categories, with quasi-inverse induced by the map x 7→ (x, x, Idx), and it follows
that for j ∈ {1, 2}, we have

pSXj ◦S iSXj = [Xj = Xj = Xj ] ∈ τ1S.

It is straightforward to check that the sum in τ1S(X1 t X2, X1 t X2) of the

compositions of pSXj with iSXj gives the span
(
(X1 tX2

f←− U f−→ (X1 tX2)
)
,

where U is the category with set of objects

{(x, x, Idx)|x ∈ Ob((X1 tX2))},

morphisms U
(
(x, x, Idx), (x′, x′, Idx′)

)
= {(a, a)|a ∈ (X1 t X2)(x, x′)}, and

obivous composition and identities. The above f is the functor given by

f(x, x, Idx) = x ; f(a, a) = a.

The functor f is an equivalence, and gives an isomorphism of spans in S:(
(X1 tX2, f, U, f, (X1 tX2)

) (Id,f,Id)−−−−−→ Id(X1tX2),

hence we have the fifth equality for biproducts in τ1S, namely:

[iSX1 ◦S pSX1 ] + [iSX2 ◦S pSX2 ] = Id(X1tX2).

Proving that composition in τ1S is bilinear with respect to + ends the proof.

Proposition 4.3.5. The category τ1B is semi-additive.

Proof. We define a monoid structure on every hom-set τ1B(X,Y ): given ψ1, ψ2 ∈
B(X,Y ), let

ψ1 t ψ2 : Xop × Y → Set

(x, y) 7→ ψ1(x, y) t ψ2(x, y)

(x′
a−→ x, y

b−→ y′) 7→ ψ1(a, b) t ψ2(a, b)

Composition in τ1B is bilinear with respect to that structure. Indeed, given
a bimodule ϕ : Y op × Z → Set, it is straightforward to check that the map(

(ψ1 t ψ2) ◦B ϕ
)
(x, z)→

(
(ψ1 ◦B ϕ) t (ψ2 ◦B ϕ)

)
(x, z)

[vi ∈ ψi(x, y), u ∈ ϕ(y, z)] 7→ [vi, u]

induces a natural isomorphism (ψ1 t ψ2) ◦B ϕ
)
'
(
(ψ1 ◦B ϕ) t (ψ2 ◦B ϕ)

)
.
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Furthermore, we claim that the 1-cells in B described in 4.3.3 give biproducts
in τ1B. Now, we prove this claim.

Since for any objects x1 of X1 and x2 of X2, and any object x ∈ X1 tX2,
either the set X1 t X2(x1, x) or the set X1 t X2(x, x2) is empty, hence both
pBX1

◦B iBX2
and pBX2

◦B iBX1
are constant functors evaluating in the empty

set.
On the other hand, for any morphisms x

a−→ x′1 and x1
b−→ x of X1, we have

the equality [a, b] = [a′, b′] ∈
(
pBX1

◦B iBX1

)
(x1, x

′
1), which means the map(

pBX1 ◦B iBX1

)
(x1, x

′
1)→ X1(x1, x

′
1), [a, b] 7→ a ◦ b is injective.

It is obviously surjective, hence [pBX1 ◦B iBX1 ] = [X1(−,−)] ∈ τ1B. The fifth
equation is obtained easily by considering the monoid structure of

(
τ1B(X1 t

X2, X1 tX2),t
)
.

Lemma 4.3.6. The functor τ1R sends biproducts in τ1S on biproducts in τ1B.

Proof. This is rather obvious from the definitions of the structures and from the
fact that R ◦ ι∗ = R∗ by Theorem 4.2.12.

Remark 4.3.7. It is well known that the category of groupoids and functors
is a symmetric monoidal category, with the cartesian monoidal product. It is
straightforward to check that the category τ1G is also symmetric monoidal via
the cartesian product, i.e. that the functor sending a groupoid to itself and a
functor to its equivalence class in the truncated 2-category is strong symmetric
monoidal.

Notation 4.3.8 (Elements of the monoidal structures). We fix the notations
for the tensor structure of Remark 4.3.7:

• the functor τ1G × τ1G
−×−−−−→ τ1G induced by the cartesian product,

• the tensor unit 1, which denotes from now on a fixed groupoid with one
object and one morphism,

• the associator a : (−×−)×− ⇒ −× (−×−),

• the left unitor lunX : 1×X → X, and the right unitor run,

• the symmetry σXY : X × Y → Y ×X.

Proposition 4.3.9. The tensor structure on τ1G induces a tensor structure on
τ1S via

1. a functor τ1S × τ1S → τ1S: for any groupoids X,X ′, Y, Y ′ and for any

spans Y
g←− V

f−→ X and Y ′
g′←− V ′

f ′−→ X ′, the monoidal product of
the classes of our two spans is given by the class of the product span

[Y × Y ′ (g,g′)←−−− V × V ′ (f,f ′)−−−→ X ×X ′],

2. the monoidal unit 1,
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3. the associators aτ1S , the left/right unitors lunτ1S/runτ1S and the symme-
try isomorphisms στ1S are all given by the images of those of τ1G by the
functor τ1ι∗.

Furthermore, the category τ1S is rigid with respect to this monoidal structure.

Proof. The fact that this gives τ1S a monoidal product follows from the fourth
part of [12], via truncation. Since Hoffnung does not say anything about symme-
try, probably by lack of a suitable definition of a monoidal symmetric tricategory,
this is what remains to be studied.

This is pretty straightforward, since both

(X × Y )× Z
τ1ι∗(a)//

τ1ι∗(σ)×Id

��

X × (Y × Z)
τ1ι∗(σ)// (Y × Z)×X

τ1ι∗(a)

��
(Y ×X)× Z

τ1ι∗(a)// Y × (X × Z)
Id×τ1ι∗(σ)// Y × (Z ×X)

and
τ1ι∗(σX Y ) ◦τ1S τ1ι∗(σY X) = IdX×Y ∈ τ1S

always hold by functoriality of τ1ι∗. Hence, we only need to show that στ1S is
a natural transformation, i.e. that given any four groupoids X,X ′, Y, Y ′ and

for any two spans Y ′
g′←− V

g−→ Y and X ′
f ′←− U

f−→ X, the following square
commutes in τ1S

X × Y(
(f ′,g′),U×V,(f,g)

)
��

στ1S // Y ×X(
(g′,f ′),U×V,(g,f)

)
��

X ′ × Y ′
στ1S

// Y ′ ×X ′

that is, the classes of the spans

Y ′ ×X ′ (g′,f ′)◦q←−−−−− (g, f)/σX Y
p−→ X × Y

and

Y ′ ×X ′ σX′ Y ′◦q1←−−−−−− Id/(f ′, g′)
(f,g)◦p1−−−−−→ X × Y

are the same, with data coming from the iso-comma squares below:

(g, f)/σX Y
p

((
q

vv
V × U

(g,f) ((

⇐
Λ

X × Y,
σvv

Y ×X
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Id/(f ′, g′)
p1
''

q1
vv

X ′ × Y ′ ⇐
Λ1

U × V.

(f ′,g′)
vv

X ′ × Y ′

One can check that the mapping c :
(
(v, u); (x, y);λ

)
7→
(
(f ′(u), g′(v)); (u, v); Id

)
induces an isomorphism of spans

(g, f)/σX Y

p

))

(g′,f ′)◦q

uu
c

��

Λ∗σY X
��

Y ′ ×X ′ X × Y

Id/(f ′, g′)

(f,g)◦p1

55

σ◦q1

ii

in S, and this ends the proof for the tensor structure.
Finally, rigidity of τ1S follows from the fact that there is a pseudofunctor

(−)∨ : Sop → S, as stated in the proof of Proposition 4.2.4, which moreover is
clearly inverse of itself. More precisely, we set:

• X∨ := X as the dual of any object,

• ηX : 1→ X×X∨ ∈ τ1S is given by the class of the span X×X ∆←− X !−→ 1

• εX : X∨ × X → 1 is given by the class of the span 1
!←− X

∆−→ X × X,
where ! denotes the only functor to 1 and ∆ the diagonal functor.

The first axiom is equivalent to the following equality in τ1B:

[X × 1←− (Id×∆)/(∆× Id) −→ 1×X] = [X × 1
run−1

←−−−− X lun−1

−−−−→ 1×X],

which holds because the mapX → (Id×∆)/(∆×Id), x 7→ ((x, x), (x, x), (Idx, Idx, Idx))
is an equivalence of category. The latter is true, indeed:

• every object in the iso-comma category is isomorphic to the image of an
object of X, as the data below shows.

x, x′, x1, x′1

x x,

λ−1
3 ◦λ2

OO

x,

λ1

OO

x,

λ2

OO

x
λ1 // x1, x

λ2 // x′1, x′
λ3 // x′1

x x,

λ1

OO

x x,

λ2

OO

x

λ−1
3 ◦λ2

OO

x

λ2

OO
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• the functor is full and faithful since every morphism (a, b, c, d) in the
comma category between the images of two objects x, x′ ∈ X

x′, x′, x′, x′

x,

a

OO

x,

b

OO

x,

c

OO

x,

d

OO

x′ x′, x′ x′, x′ x′

x

a

OO

x,

c

OO

x

OO

a // x,

d

OO

x

b

OO

x

d

OO

has to be of the form (a, a, a, a).

This proves the first axiom, and the second one holds by a similar proof.

Proposition 4.3.10. The tensor structure on τ1G induces a tensor structure
on τ1B via

1. a functor τ1B × τ1B → τ1B: for any groupoids X,X ′, Y, Y ′ and for any
bimodules ϕ : Xop × Y → Set and ϕ′ : X ′op × Y ′ → Set, ϕ ×τ1B ϕ′ :
(X × X ′)op × (Y × Y ′) → Set is given by (ϕ × ϕ′), precomposed by the
relevant shuffling of the information,

(X ×X ′)op × (Y × Y ′) '−→ (X ′op ×Xop)× (Y × Y ′)
a−→ ((X ′op ×Xop)× Y )× Y ′

a×Id−−−→ (X ′op × (Xop × Y ))× Y ′

σ×Id−−−→ ((Xop × Y )×X ′op)× Y ′
a−→ (Xop × Y )× (X ′op × Y ′)

2. the monoidal unit 1,

3. the associators aτ1B, the left/right unitors lunτ1B/runτ1B and the symme-
try isomorphisms στ1B are all given by the images of those of τ1G by the
functor τ1R∗.

Proof. The verifications that the above data defines a tensor structure are easy
consequences of the analogous fact for the product of sets, and the uniqueness of
the shuffling identification in 1. We leave the remaining details to the reader.

Lemma 4.3.11. The functor τ1R is a strong tensor functor.
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Proof. We consider the following diagram

τ1S × τ1S
×τ1S //

τ1R×τ1R
��

τ1S

τ1R
��

τ1B × τ1B ×τ1B
// τ1B

Fix four groupoids X,X ′, Y, Y ′ and two spans Y
g←− V

f−→ X and Y ′
g′←− V ′

f ′−→
X ′, and define

×τ1B ◦
(
τ1R× τ1R

)(
[Y ′, g′, V ′, f ′, X ′], [Y, g, V, f,X]

)
=

×τ1B
(
R∗(g′) ◦B R∗(f ′),R∗(g) ◦B R∗(f)

)
=: ψ

and
τ1R ◦ (×τ1S)

(
[Y ′, g′, V ′, f ′, X ′], [Y, g, V, f,X]

)
=

R∗(g′ × g) ◦B R∗(f ′ × f) =: ψ1

Given any object
(
(x′, x), (y′, y)

)
∈ (X ′ ×X)op × (Y ′ × Y ), we consider an

element(
[y′

b′−→ g′(v′), x′
a′−→ f ′(v′)], [y

b−→ g(v), x
a−→ f(v)]

)
∈ ψ1

(
(x′, x), (y′, y)

)
and we map it to

[(b′, b), (a′, a)] ∈ ψ
(
(x′, x), (y′, y)

)
.

Checking this induces a natural isomorphism strgR is straightforward, and
one can note that the mapping above is only a shuffling of the information.

It is rather obvious, from the definitions of the structures (both inherited
from the cartesian tensor structure on τ1G) and from the fact that R◦ ι∗ = R∗
by Theorem 4.2.12, that the axiom of a strong tensor functor follow.

Definition 4.3.12. From now on, we define

• C to be the category kτ1S,

• D to be the category kτ1B, with the prefix k meaning we k-linearized the
category as in 1.2.5 both times

• F : C→ D to be the k-linear extension of τ1R to C (see 1.2.6).

Lemma 4.3.13. The V-functor F : C→ D is full and strong monoidal.

Proof. This follows from Lemma 4.3.1, 4.3.6 and 4.3.11.
Note that the monoidal structures survive the k-linearization, and are com-

patible with it. Furthermore, F is defined as the V-functor extending the semi-
additive functor τ1R to C. It follows that the fullness of τ1R implies that F is
full.
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4.4 Biset functors and global Mackey functors

Now, we establish the link with Serge Bouc’s theory of biset functors, and the
comparison studied by Ganter and Nakaoka in [10], [20] and [21].

Definition 4.4.1. Following Bouc [6], we define the biset category B to be the
category with

• objects the finite groups;

• morphisms B(H,G) := kB(G,H), that is the k-linearization of the Groth-
endieck group associated to the monoid of isomorphism classes of (G,H)-
bisets together with the disjoint union (recall that a (G,H)-biset is the
same as a left Hop × G-set, seen as a set equipped with commuting left
G-action and right H-action);

• composition induced by the following construction: given three finite
groups G, H and K, and given U a (G,H)-biset and V a (H,K)-biset, we
denote V ×H U the (G,K)-biset with underlying set the quotient of the
set V ×U by the action of H given by (v, u) · h = (v · h, h−1 · u), and with
(G,K)-action induced by k · (v, u) · g = (k · v, u · g);

• identities given by IdG the biset with underlying set G and actions of G
given by multiplication on both sides.

Proposition 4.4.2. This definition is indeed that of a category.

Proof. See Bouc’s book [6] for a proof and a treatment of this subject.

Proposition 4.4.3. There is an equivalence of categories between Bouc’s cat-
egory of biset functors VB (denoted by F in [6]) and VD.

Proof. This is essentially equivalent to theorem 4.3 of [14], as we can see D as
the additive completion of B (that is the smallest additive category containing
B as a full subcategory), noting that

• every finite groupoid is equivalent to the disjoint union of a finite family
of groupoids with one object, the latter being essentially finite groups, as
we will see below;

• the “fractions” X/G defined in [14] for G a finite group and X finite G-set
are essentially transport groupoids;

see Nakaoka’s paper [21] for details.
Indeed, we can define a functor I : B → D, precomposition by which will

give the equivalence with the arguments of [14]. The functor is as follows:

• a finite group G is mapped to the groupoid G with a single object ∗, such
that G(∗, ∗) = G;
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• the class of a (G,H)-biset U is mapped to the class of the following bi-
module

U : Gop ×H → Set

U(∗, ∗) = U

U(g, h) : u 7→ h · u · g

Functoriality holds if I(V ×HU) ' V ◦BU ∈ B, which follows from the definitions
of both quotients.

The functor I is full, since given any two finite groupsG andH, any bimodule
ϕ : Gop × H → Set gives a finite set Uϕ := ϕ(∗, ∗), with actions given by
∀u ∈ Uϕ, ∀g ∈ G, and ∀h ∈ H

u · g = ϕ(g, Id)(u) ; h · u = ϕ(Id, h)(u)

The fact that the actions commute is obvious enough, and so is the fact that
I(Uϕ) = ϕ ∈ τ1B. Furthermore, it is clear that this describes an isomorphism
between B(G,H) and D(G,H), and that I is actually fully faithful.

Every object in D is a direct sum of objects in the image of I, hence D is
(equivalent to) the additive completion of B. As a consequence, the restriction
functor along I

I∗ : VD −→ VB

is an equivalence of V-categories.

Definition 4.4.4. Following Ganter [10] and Nakaoka [20], we define global
Mackey functors to be the V-functors from C = kτ1S to the category of k-
modules.

Remark 4.4.5. Note that sometimes, in Webb’s work [27] for instance, global
Mackey functors are given a different definition, that of what would be deflative
global Mackey functors, to use the term from Nakaoka’s [20].

We can now directly apply the Theorem 1.3.13 of chapter 1 to the functor
F of Definition 4.3.12 and we obtain the following result, most of which (safe
the monoidal part) has already appeared in work of Nakaoka [20] [21]:

Corollary 4.4.6 (Biset functors vs global Mackey functors). There is an equiv-
alence of tensor categories between:

• The category of modules over a certain global Green functor (see [21]);

• The category of biset functors VB of Bouc [6].

Moreover, both categories identify canonically with the reflexive full subcategory
of global Mackey functors satisfying the ‘deflation axiom’ (N EG):

defGG/N ◦ infGG/N = Id.
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Proof. By Lemma 4.3.13, the functor F : C → D meets the requirements of
1.3.13, and by 4.3.9 the category C is rigid, hence the results follows. The
mentioned global Green functor is, of course, the commutative monoid A =
F ∗(1VD) in the tensor category VC of global Mackey functors.

The ‘moreover’ part is proved in [20]. Note however that it is not immediately
evident why the definition of global Mackey functor given there agrees with
ours; one must first notice that Nakaoka’s bicategory S is biequivalent to that
of groupoids (see [21] for details).
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