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Abstract

In this thesis, we investigate the theory of Hilbert modules over C∗-categories
and use this theory to prove results on a variety of categories of C∗-categories
and C∗-algebras.

In Chapter 1, we introduce the theory of C∗-categories and establish in
particular the properties of the additive closure and the multiplier category of
a given C∗-category.

In Chapter 2, we look at Hilbert modules over C∗-categories and bounded
and compact operators between Hilbert modules. We prove a Yoneda lemma for
C∗-categories, and an approximate projectivity property that relates Hilbert
modules to free Hilbert modules. We also introduce right Hilbert bimodules,
which admit an action from two C∗-categories.

In Chapter 3, we define the tensor product of a right Hilbert bimodule with
a Hilbert module, and prove an Eilenberg-Watts theorem characterizing those
functors of Hilbert module categories given by tensoring by a right Hilbert
bimodule. We also prove a Morita theorem characterizing those bimodules
that give equivalences of module categories upon tensoring.

In Chapter 4, we use the Eilenberg-Watts theorem to prove the equivalence
of several bicategories and 2-categories of C∗-categories and C∗-algebras. We
end by employing the Eilenberg-Watts theorem to exhibit a localization of a
category of C∗-categories at the Morita equivalences.

In the Appendix, we look at the maximal tensor product of C∗-categories
and prove a tensor-hom adjunction for non-degenerate functors of C∗-categories.
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Introduction

A pervasive theme in algebra is to consider some appropriately defined cate-
gory of modules over a fixed type of object, and ask how we might see that
two objects share equivalent categories of modules, i.e. that they are Morita
equivalent. This philosophy of Morita equivalence gets its name from the work
of Kiiti Morita who first solved this problem in the case of rings [Mor58]. We
refer the reader to [Mey97] for characterizations of Morita equivalences in the
cases of rings, C∗- and W ∗-algebras, and topological groupoids.

A common step in solving this problem is a result that states that cer-
tain functors from the category of A-modules to that of B-modules are deter-
mined by their precomposition with some embedding of A into its own module
category, or more precisely, are always equivalent to tensoring with the A-B
bimodule given by this composition. This sort of result is usually called an
Eilenberg-Watts theorem after simultaneous discoveries by Eilenberg, Watts
and Zisman in the ring case: see [Wat60] for Watts’ contribution. Blecher
proved an Eilenberg-Watts theorem for Hilbert modules over C∗-algebras in
[Ble97]. For an exposition of several more such results, including in homotopi-
cal algebra and enriched categories, see [nLa23a]. With an Eilenberg-Watts
theorem in hand, the problem of Morita invariance reduces to determining
which A-B bimodules give, through their tensor product functor, an equiva-
lence between the module categories of A and B.

Finally, a particularly well-behaved modern set-up is a Morita homotopy
category whose objects are those such as A and B and which has isomorphisms
between exactly those objects that are Morita equivalent. We might ask more-
over that there is a universal functor from the usual category to the Morita
homotopy category which inverts those morphisms between objects which give
Morita equivalences (i.e. is a localization at the Morita equivalences), and hope
that there is a concrete description of the hom-spaces of the category. This has
been achieved for example in the case of unital C∗-categories ([DT14]), dg-
categories (see [Tab05], [Toë07]), as well as in the case of (∞, 1)-categories
([CG19]). One immediately notices that this only seems to be feasible when
our objects are themselves certain kinds of categories: one explanation for this
phenomenon is that only in this scenario can one invert Yoneda-type functors
from each category into its module category.

This thesis solves all three of the above problems (an Eilenberg-Watts the-
orem, a characterization of Morita equivalent objects, and a Morita homotopy
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theory) in the case of locally small, not necessarily unital C∗-categories. These
are semicategories enriched over complex Banach spaces with a well-behaved
involution on the hom-spaces, built to model the topology and involution on
spaces of operators between Hilbert spaces. The correct notion of a module
here is a Hilbert module over a C∗-category. Proving results on the Morita
theory of non-unital C∗-categories is considerably harder than the unital case
treated in [DT14], since two Morita equivalent unital C∗-categories must be
Morita equivalent as additive categories1. This mirrors the fact that unital C∗-
algebras are Morita equivalent if and only if they are Morita equivalent as rings
([Bee82, §1.8]). For general C∗-categories there is no hope of such a result, and
we must instead explore the theory of Hilbert modules over C∗-categories in
earnest.

The first definition of C∗-categories was given in [GLR85]: they are a hor-
izontal categorification of C∗-algebras, meaning one-object C∗-categories are
simply C∗-algebras. We will see that many basic results on C∗-algebras carry
over straightforwardly to the setting of C∗-categories, but there are a few im-
portant constructions from the literature that are specific to C∗-categories.
Chapter 1 is devoted to recapitulating these constructions. In particular, it
defines for a C∗-category A its additive closure A⊕ (Proposition 1.2.3) and
multiplier category MA (Proposition 1.3.4), as well as clarifying their univer-
sal properties and how they interact (Lemma 1.3.6, Lemma 1.5.5).

Chapter 2 focuses on our notion of module over a C∗-category A, namely
right Hilbert A-modules. We define adjointable and compact operators be-
tween these, prove a Yoneda lemma (Proposition 2.3.11), and in particular we
identify morphisms in A with compact operators between representable mod-
ules over A. We also characterize a ‘strong∗’ topology of pointwise convergence
on operators (Definition 2.3.15) and prove that the multiplier category of the
compact operators returns the bounded operators (Proposition 2.4.7). We fin-
ish by generalizing a result of Blecher’s ([Ble97, Theorem 3.1]) which is crucial
in his proof of the C∗-algebra Eilenberg-Watts theorem: it says that Hilbert
module can asymptotically be viewed as a direct summand in a net of finitely
generated free modules (Theorem 2.5.6).

Chapter 3 brings the promised results on functors between module cate-
gories, beginning with the Eilenberg-Watts theorem:

Theorem (Theorem 3.2.4). Let A and B be locally small C∗-categories, and
let F : Hilb-A → Hilb-B be a unital C∗-functor which is strongly∗ continuous on
bounded subsets. Let E : A → Hilb-B be the right Hilbert A-B bimodule obtained
by precomposing F with the Yoneda embedding ιA : A → Hilb-A. Then there
exists a unitary isomorphism F ∼= −⊗̄AE of functors.

Here the strong∗ topology is the topology of pointwise convergence men-
tioned earlier (see Definition 2.3.15) and ⊗̄A is the tensor product of Hilbert
bimodules (see Lemma 3.1.6).

1To be precise, they must have the same closure under subobjects and direct sums: in
[DT14] this was taken to be the definition of Morita equivalence, and we show in Proposi-
tion 3.4.8 that our definition coincides with theirs in the unital case.
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We build on this result to characterize which C∗-categories are Morita
equivalent, and find that the answer is completely analogous to the C∗-algebra
case:

Theorem (Theorem 3.4.5). If A and B are locally small C∗-categories, the
following are equivalent:

• There is a C∗-functor F : Hilb-A → Hilb-B which is an equivalence and
strongly∗ continuous on bounded subsets.

• There exists a right Hilbert A-B bimodule E : A → Hilb-B which is left
small, full, non-degenerate, and an isometry onto the compact operators
between modules in its image.

• There exists a bi-Hilbert A-B bimodule E whose inner products are both
full and satisfy the compatibility equation A⟨e, f⟩ · g = e · ⟨f, g⟩B for
all elements e ∈ E(x)(y), f ∈ E(x′)(y) and g ∈ E(x′)(y′) and objects
x, x′ ∈ ObA, y, y′ ∈ ObB.

Here ‘left small’ is a technical set-theoretic condition and ‘full’ signifies, as
in the algebra case, that the inner products on the bimodule span a dense ideal
of B (Definition 3.3.5). The definition of a bi-Hilbert bimodule is another direct
generalization of the algebra case (see Definition 3.3.3).

As an easy corollary of this result, we considerably relax the assumptions
on a result of Joachim’s [Joa03, Proposition 3.2], which says that a unital
C∗-category with countably many objects is always Morita equivalent to a C∗-
algebra, and show that in fact every small C∗-category is Morita equivalent to
a C∗-algebra (Proposition 3.4.9).

Chapter 4 contains the promised categorical framework for our results.
First, we use the Eilenberg-Watts theorem and Proposition 3.4.9 to construct
biequivalences between four bicategories of C∗-categories and C∗-algebras (Propo-
sition 4.1.4). Finally, we exhibit the localization of the category of locally small
C∗-categories at the Morita equivalences:

Theorem (Theorem 4.2.7). Let C∗Cat be the 1-category whose objects are
locally small C∗-categories, and whose morphisms from A to B are natural iso-
morphism classes of non-degenerate functors from A to the multiplier category
MB of B.

Let KHilb- : C∗Cat → C∗Cat be the endofunctor that takes every C∗-
category to its C∗-category of Hilbert modules and compact operators, and ev-
ery non-degenerate functor to the tensor product with the bimodule obtained by
composing with the embedding MB → Hilb-B. Let HMod be the full subcate-
gory with objects those in the image of KHilb-.

Then KHilb- exhibits HMod as the reflective localization of C∗Cat at the
Morita equivalences, and two C∗-categories become isomorphic in HMod if
and only if they are Morita equivalent.
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In Appendix A, we define for two non-unital C∗-categories A and B their
maximal tensor product A⊗max B and prove a tensor-hom adjunction for non-
degenerate functors (Proposition A.20).



Chapter 1

C∗-categories

We begin with an investigation into the theory of C∗-categories. After present-
ing some basic constructions and results, we introduce the additive closure and
the multiplier category of a given C∗-category, proving universal properties for
both.

A note on terminology: in this thesis, we will use the term ‘category’ to refer
to a semicategory (a category that doesn’t necessarily have units), and ‘unital
category’ to refer to what’s usually called a category. Similarly a ‘functor’ will
signify a semifunctor (i.e. a mapping of objects and morphisms that preserves
composition but does not necessarily preserve units, even if they exist) and a
functor between unital categories that preserves units will be called a ‘unital
functor’.

1.1 Basic theory of C∗-categories

Throughout this thesis we work in the following commonplace set-up:

Definition 1.1.1. We denote by Set0 the ordinary category of sets. We’ll refer
to categories as small if their collection of objects is an object of Set0 and its
hom-spaces are objects of Set0.

We denote by Set1 the category of large sets, i.e. an enlargement of Set0
that is large enough to contain as an object the collection of all objects of Set0.
We denote by locally small categories those whose hom-sets live in Set0 and
whose collection of objects lives in Set1, for example the category Set0.

We denote by Set2 the category of very large sets, i.e. an enlargement of
Set1 that is large enough to contain as an object the collection of all objects
of Set1. We denote by large categories those whose hom-sets live in Set1 and
whose collection of objects lives in Set2, for example the category Set1.

Since the categories Seti embed in each other as i increases we adopt the
convention that small categories are locally small and locally small categories
are large.

We build on this set-up for our purposes as follows:

11
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Definition 1.1.2. For i = 0, 1 we denote by VectC,i the bicomplete closed
symmetric monoidal category such that

• Its objects are Seti-objects endowed with the structure of a complex vec-
tor space.

• Its morphisms are complex linear maps.

• Its tensor product is the standard complex tensor product ⊗C.

• Its internal hom object for any two spacesX and Y is the space Lin(X,Y )
of complex linear maps from X to Y .

Definition 1.1.3. For i = 0, 1 we denote by Bani the bicomplete closed sym-
metric monoidal category such that:

• Its objects are Seti-objects endowed with the structure of a complex Ba-
nach space.

• Its morphisms are complex linear maps which are in addition short, i.e.
they do not increase the norm of any element.

• Its tensor product is the standard (projective) tensor product, simply
written ⊗.

• Its internal hom object for any two spaces X and Y is the Banach space
Map(X,Y ) of bounded complex linear maps from X to Y .

Finally, we denote by Fi : Bani→VectC,i the obvious lax monoidal forgetful
functors.

The bicompleteness and closed monoidal structure of Ban0 is treated in
[Yua12]. If one wanted to be more careful about showing VectC,1 and Ban1 are
well-defined, one could use the theory of universe enlargement: for more details
on this procedure see for example [Kel05, Section 2.6]. We won’t go into this
any further here.

Categories enriched over VectC,i or Bani are called complex, resp. Banach
categories and we apply labels like small and large to them in the way suggested
by Definition 1.1.1. Since we haven’t defined an infinite hierarchy of universes,
we’ll take care to comment on whether each construction of a new category
increases the size or not.

Several recent works on C∗-categories ([Mit02a][DT14][Fer23]) only treat
small C∗-categories, while some ([BE21]) work with a ‘universes’ approach like
we do in this first chapter. From Chapter 2 on, we will look only at locally
small C∗-categories, and in Chapter 4 we prove some results that hold only for
small C∗-categories.

We can characterize which complex categories can be further enriched to
Banach categories:
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Lemma 1.1.4. Then C be a small, locally small, or large complex category.
It is the image under change of base (induced by a forgetful functor Fi) of a
Banach category if and only if for all x, y, z ∈ Ob C the following hold:

• The space C(x, y) can be equipped with a Banach norm.

• The composition is contractive, i.e. for each a ∈ C(y, z), b ∈ C(x, y) we
have ∥a ◦ b∥ ≤ ∥a∥∥b∥.

Proof. Suppose the complex enrichment can be lifted to a Banach enrichment:
then clearly the first point is satisfied. Furthermore, by definition of the norm
on the projective tensor product C(y, z)⊗C(x, y) we have ∥a⊗ b∥ = ∥a∥∥b∥. So
if the composition map on the C(y, z)⊗C C(x, y) can be lifted to a short map on
the projective tensor product, then we must have ∥a ◦ b∥ ≤ ∥a⊗ b∥ = ∥a∥∥b∥.

For the converse, we only need to show that under the assumptions in the
lemma, the complex composition map

◦ : C(y, z)⊗C C(x, y)→C(x, z)

lifts to a short map on the projective tensor product. But considering its image
under the complex tensor-hom adjunction ◦̂ : C(y, z)→Lin(C(x, y), C(x, z)),
the contractive property implies that ◦̂ in fact lands in the Banach space
Map(C(x, y), C(x, z)) and is a short map when the norm on C(y, z) is con-
sidered. So we can pass it back through the tensor-hom adjunction in Bani
and get a short lift of ◦ to the projective tensor product.

We define a fundamental notion of Banach space theory:

Definition 1.1.5. Let B be a Banach space and Λ be a partially ordered set.
A net {bλ : λ ∈ Λ} in B is simply a collection of elements of B indexed over
Λ. We say that (bλ) converges to b ∈ B if for any ϵ > 0 there is an element
λϵ ∈ Λ such that

for all λ ≥ λϵ we have ∥bλ − b∥ < ϵ.

We refer the reader to [Wil70, Chapter 4, Section 11] for details on the
theory of nets. Note that a net indexed over the natural numbers is simply a
sequence.

Remark 1.1.6. We will often refer to a net such as {bλ : λ ∈ Λ} simply as
(bλ), leaving the indexing set implicit, and denote ‘convergence over Λ’ by the

symbol
λ−→.

We prove that in a Banach category the composition maps are continuous
in the following sense:

Lemma 1.1.7. Let C be a Banach category. If {bλ : λ ∈ Λ} is a net in C(y, z)
converging to b ∈ C(y, z), and {cµ : µ ∈ M} is a net in C(x, y) converging
to c ∈ C(x, y), and one of {bλ} or {cµ} is uniformly bounded, then the net
{bλcµ : (λ, µ) ∈ Λ ×M)} converges to bc. Here the set Λ ×M is given the
product order, i.e. (λ1, µ1) ≤ (λ2, µ2) if λ1 ≤ λ2 and µ1 ≤ µ2.
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Proof. Suppose for some K ∈ R that ∥bλ∥ ≤ K for all λ ∈ Λ. Then note that

∥bλcµ − bc∥ = ∥bλ(cµ − c) + (bλ − b)c∥ ≤ K∥cµ − c∥+ ∥b− bλ∥∥c∥

which evidently goes to zero as (λ, µ) varies over Λ×M . The case where {cµ}
is uniformly bounded proceeds similarly.

Definition 1.1.8. A Banach ∗-category is a Banach category C equipped with
a conjugate linear involution (−)∗ : C → Cop that fixes objects and squares to
the identity functor: that is, for all morphisms f , we have (f∗)∗ = f .

Before we move on to defining a C∗-category, we remind the reader of some
basic concepts which play a crucial role in the theory C∗-algebras.

Definition 1.1.9. If A is a non-unital complex algebra, we denote by A+ the
algebra given as a vector space by A⊕C and whose multiplication is given by
(a1, λ1)(a2, λ2) = (a1a2 + λ1a2 + λ2a1, λ1λ2). If A is a unital complex algebra
we simply set A+ = A.

It is obvious that if A is non-unital, A+ has a unit given by (0, 1) ∈ A⊕C.

Definition 1.1.10. If A is any (possibly non-unital) complex algebra and
a ∈ A, then we denote by Spec(a) ⊆ C, or by the spectrum of a, the set of
numbers λ such that a− λ id is not invertible in the algebra A+. We say that
a is positive if Spec(a) ⊆ R≥0.

Definition 1.1.11. A C∗-category is a Banach ∗-category A such that for all
x, y ∈ ObA and a ∈ A(x, y) we have:

• the morphism a∗a ∈ A(x, x) satisfies the C∗-identity ∥a∗a∥ = ∥a∥2 and

• the morphism a∗a is positive.

Readers versed in operator algebras will know that in the case where A has
a single object x, the first of the above two axioms is enough to specify that
A(x, x) is a C∗-algebra, and the positivity requirement then follows (see e.g.
[Mur90, Theorem 2.2.5]). In the case of C∗-categories there are pathological
examples satisfying the first but not the second axiom: see [Mit02a, Example
2.10].

The positivity axiom for C∗-categories requires that we make a variety of
arguments in this thesis about positivity in C∗-algebras. For this reason we
collate here some classical results on this topic, along with citations. In the
statements below, A is a C∗-algebra and a and b are elements of A.

Definition 1.1.12. The element a is said to be normal if a∗a = aa∗ and
self-adjoint if furthermore a∗ = a.

Lemma 1.1.13 ([Mur90, Theorem 2.2.5]). The element a is positive if and
only if a = d∗d for some d ∈ A.
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Lemma 1.1.14 ([Put19, Corollary 1.4.10]). If a is normal, then a has real
spectrum if and only if it is self-adjoint.

Lemma 1.1.15 ([Put19, Lemma 1.6.1]). If a is self-adjoint, it can be written
as a difference a = b− c where b and c are positive and bc = 0.

Lemma 1.1.16 ([Mur90, Theorem 2.2.1]). If a is positive, there is a unique
positive element b such that b2 = a.

Lemma 1.1.17 ([Mur90, p. 44]). If A ⊆ B is an inclusion of C∗-algebras,
then for all a ∈ A, we have SpecA(a) ∪ {0} = SpecB(a) ∪ {0}. In particular, a
is positive in A if and only if a is positive in B.

Lemma 1.1.18 ([Put19, Proposition 1.6.3]). If a and b are positive, then a+b
is positive again.

Lemma 1.1.19 ([Shi21, Corollary 2.3.2]). If a and b are positive and ab = ba,
then ab is again positive.

Recall for the final lemmas that we say a ≥ b when the element a − b is
positive.

Lemma 1.1.20 ([Dix77, Lemma 1.6.8]). If a is any element of a C∗-algebra
A and b ∈ A is positive, then ∥a∥2b ≥ a∗ba.

Lemma 1.1.21 ([Dix77, Lemma 1.6.9]). If a and b are positive elements and
a ≥ b, then ∥a∥ ≥ ∥b∥.

Lemma 1.1.22. If pn is a sequence of positive elements in a C∗-algebra with
limit p, then p is also positive.

Proof. Embed A into the algebra of bounded operators B(H) on a Hilbert
space H, and recall that an element T of B(H) is positive if and only if the
inner product ⟨h, T (h)⟩H is a positive real number for all h ∈ H. But then

by the Cauchy-Schwarz inequality it’s clear that ⟨h, pn(h)⟩
n−→ ⟨h, p(h)⟩ for all

h ∈ H and we see that if all elements pn are positive, so is p.

The final lemma we quote is not about positive elements but about a fun-
damental construction in C∗-algebra theory called the functional calculus:

Lemma 1.1.23 ([Mur90, Theorem 2.1.13]). Let A be a unital C∗-algebra and
a be a normal element. Furthermore let z : Spec(a)→C be the inclusion map.
Then there is a unique unital ∗-homomorphism ϕ : C(Spec(a))→A such that
ϕ(z) = a, and furthermore ϕ has image the C∗-subalgebra of A generated by a.

Returning to C∗-categories, the axiom stating ∥a∗a∥ = ∥a∥2 is called the
C∗-identity. We record here for posterity a slightly weaker statement that also
implies this condition. Note that we will occasionally write a ∈ A(x, y) or
simply a ∈ A for the claim ‘a ∈ A(x, y) for some x, y ∈ ObA’.
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Lemma 1.1.24. If A is a Banach ∗-category such that for all a ∈ A we have
∥a∗a∥ ≥ ∥a∥2, then in fact ∥a∗∥ = ∥a∥ and ∥a∗a∥ = ∥a∥2.

Proof. If ∥a∥ = 0, then a = a∗ = 0 and the C∗-equality is obvious. Otherwise,
note that by contractivity we get ∥a∗∥ · ∥a∥ ≥ ∥a∗a∥ ≥ ∥a∥2, so dividing out
∥a∥ we obtain ∥a∗∥ ≥ ∥a∥. But then we also have ∥a∥ = ∥a∗∗∥ ≥ ∥a∗∥,
so in fact ∥a∗∥ = ∥a∥, and by contractivity ∥a∗a∥ ≤ ∥a∥2. Hence we get
∥a∗a∥ = ∥a∥2.

We give some examples to provide a flavour of the theory.

Example 1.1.25. C∗-algebras are precisely those Banach ∗-algebras that oc-
cur as the hom-space of a single-object C∗-category.

It is with this justification that C∗-categories can be regarded as ‘multi-
object’ C∗-algebras.

Example 1.1.26. The category Hilb of small Hilbert spaces and bounded op-
erators between them is a locally small C∗-category with the familiar operator
norm, and involution given by taking adjoint operators.

Remark 1.1.27. It is in fact the case that much as every C∗-algebra can be
embedded into the algebra of all bounded operators on some Hilbert space,
every small C∗-category can be embedded isometrically into the C∗-category
Hilb: see [Mit02a, Theorem 6.12]. The proof involves a direct analog of the
Gelfand-Naimark-Segal construction. We will not use this result in this thesis,
and stick with an abstract rather than a concrete notion of C∗-categories.

Example 1.1.28 ([Mit02a, Definition 5.10]). If G is a small discrete groupoid,
then there is a maximal groupoid C∗-category C∗

max(G) with the same objects as
G, whose hom-spaces C*

max(G)(x, y) are given by taking the free complex vector
space on G(x, y) and completing in the norm given by ∥a∥ = supF :G→Hilb ∥F (a)∥
(where F varies over unitary representations of G). The involution is given by
(λ · g)∗ = λ · g−1.

There is also a ‘reduced groupoid C∗-category’ defined along similar lines in
the same publication. For a more general perspective on the maximal groupoid
construction, we refer the reader to the series of adjunctions presented on
[Bun21, p. 66], which assemble to give a ‘free C∗-category’ on any category
with involution.

A groupoid C∗-category in the case where G is not discrete can be defined
using the notion of a topological C∗-category, i.e. one with a topology on the
objects. We do not investigate this construction here and instead refer the
interested reader to [OSu17, Section 5.1].

We will see in this chapter a number of ways of producing a new C∗-category
from a given one, the first being as follows:
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Lemma 1.1.29. If A is a C∗-category, then Aop is again a C∗-category with
respect to the same complex vector space structure and norms, and involution
(−)∗op given simply by the opposite functor of the normal involution of A.

Proof. The only things to check are the C∗-identity and positivity: but clearly
requiring that a∗ ◦op a = aa∗ is positive for all a is equivalent to requiring that
a∗a is positive, and ∥a∗ ◦op a∥ = ∥aa∗∥ = ∥(a∗∗)a∗∥ = ∥a∗∥2 = ∥a∥2.

We recall here two important definitions that give us another example of a
C∗-category.

Definition 1.1.30. If B is a C∗-algebra, a right Hilbert B-module is a right
B-module E with a B-valued inner product ⟨−,−⟩ : E ×E → B that satisfies
the following requirements for all e, f ∈ E, b ∈ B, λ, µ ∈ C:

• ⟨λe, µf⟩ = λµ⟨e, f⟩.

• ⟨e, f⟩ = ⟨f, e⟩∗.

• ⟨e, f⟩b = ⟨e, f · b⟩.

• ⟨e, e⟩ is a positive element of B and vanishes only if e = 0.

• E is complete in the norm ∥e∥ :=
√

∥⟨e, e⟩∥B .

We will describe any inner product with the first property as sesquilinear from
here onwards.

Definition 1.1.31. For two right Hilbert modules E and F over a C∗-algebra
B, a B-homomorphism T : E → F is a bounded adjointable map when it is a
bounded map in the given norms and there exists an adjoint transformation
T ∗ : F → E such that for all e ∈ E, f ∈ F we have

⟨T (e), f⟩F = ⟨e, T ∗(f)⟩E .

It follows easily that the adjoint of a transformation T is unique if it exists.
Notice that when we set B = C, the above definition describes Hilbert spaces
and bounded adjointable1 maps between them.

Example 1.1.32. For any C∗-algebra B, the category Hilb-B of right Hilbert
B-modules and bounded adjointable operators is a unital C∗-category, with
the standard operator norm and with adjoints providing the involution.

We do not prove this result here as it is a special case of a result in the
next chapter (Proposition 2.2.6). We refer the reader to [Lan95] for a thorough
exposition of the theory of Hilbert modules over C∗-algebras.

Functors between C∗-categories get an adapted definition:

1In the case B = C a bounded linear operator necessarily has an adjoint, so we might as
well speak simply of ‘bounded operators’. For general B, though, the existence of an adjoint
does not follow from the other properties here.
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Definition 1.1.33. If A and B are C∗-categories, a C∗-functor from A to B
is a complex linear functor F : A → B that intertwines the involutions on A
and B.

This is called a linear ∗-functor in parts of the literature, but we prefer
‘C∗-functor’ for brevity. An example of a functor between C∗-categories that
is not a C∗-functor is the involution: the functor (−)∗ : A → Aop is not a
C∗-functor since it is not linear but conjugate linear.

One might ask whether there is a continuity requirement missing here, but
as in the algebraic case, this is determined by the other structure. The proofs
of these results are simple but we include them here for completeness:

Proposition 1.1.34 ([Mit02a, Proposition 2.14]). If F : A → B is a C∗-
functor, its associated maps on hom-spaces F : A(x, y) → B(F (x), F (y)) are
norm-decreasing, so a fortiori continuous.

Furthermore, C∗-functors that give injective maps on hom-spaces are iso-
metric.

Proof. Note by the C∗-identity that for every a ∈ A we have ∥a∥ =
√

∥a∗a∥, so
it suffices to prove the lemma holds on (positive) endomorphisms a ∈ A(x, x).
But clearly F restricts to a ∗-homomorphism A(x, x) → B(F (x), F (x)), and it
is then a standard result of C∗-algebra theory that such a map is automatically
norm-decreasing (see for example [Mur90, Theorem 2.1.7]). Furthermore, an
injective ∗-homomorphism of C∗-algebras is isometric (see [Mur90, Theorem
3.1.5]), proving the second result.

Corollary 1.1.35 ([Mit02a, Corollary 2.16]). The norm on any C∗-category
is unique: that is, if ∥ · ∥1 and ∥ · ∥2 are two norms on a linear ∗-category C
both turning it into a C∗-category, then actually ∥ · ∥1 = ∥ · ∥2.

Proof. Let C1 and C2 be the two C∗-categories associated to C by the norms.
Then the identity functor C1 → C2 is injective, so it must be isometric, and in
fact ∥a∥1 = ∥a∥2 for all a ∈ A.

We define several types of subcategory of a C∗-category:

Definition 1.1.36. If A is a C∗-category, a C-linear subcategory B ⊆ A is a
sub-C∗-category if it is closed in the norm, as well as closed under the involution.
A sub-C∗-category B is a C∗-ideal (or simply an ideal) if in addition for all
composable f ∈ A, g ∈ B, h ∈ A we have fg ∈ B, gh ∈ B. An ideal B is
essential if the following statement is true for all a ∈ A: if ab = 0 for all b ∈ B
such that this composition exist, then a = 0.

Note that since there is at least one morphism (the zero morphism) between
any two objects in a C∗-category, an ideal of A necessarily contains all objects
of A, i.e. it is necessarily a wide subcategory.

We deduce an important property of essential ideals:
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Proposition 1.1.37. If B ⊆ A is an essential ideal and C ⊆ A is any ideal
such that C ∩B = 0, then C = 0.

Proof. Suppose C is another ideal of A such that C ∩B = 0. Then certainly for
any composable pair c ∈ C, b ∈ B, we have cb ∈ C ∩ B by ideal properties, so
cb = 0, and the stated property gives c = 0 for all c ∈ C. So B has the stated
property.

In the C∗-algebra case, the above characterization is equivalent to essen-
tiality (see e.g. [Mur90, p.82]). As far as we know, it’s a little weaker in the
C∗-category case.

We prove here for later use an easy technical lemma that helps us generate
an ideal from any collection of morphisms in a C∗-category.

Proposition 1.1.38. If B is any collection of morphisms in A, there is an
ideal

ABA

of A with the following property:

• B ⊆ ABA

• if C is any ideal of A and B ⊆ C, then ABA ⊆ C.

Furthermore, for any two objects v and z of A, the hom-space ABA(v, z)
can be described explicitly as the norm-closure of the space of finite sums∑n
i=1 aibiαi where for each i we have ai ∈ A(yi, z), αi ∈ A(v, xi) for some

xi, yi ∈ ObA and either bi ∈ B(xi, yi) or b
∗
i ∈ B(yi, xi).

Proof. Any two-sided ideal containing B must contain elements of the form
aibiαi as above where bi ∈ B(xi, yi), as well as their involutions, giving us the
case where b∗i ∈ B(yi, xi). As we have defined ideals to be complex linear norm
closed subcategories, all norm limits of finite sums of these must be in any ideal
containing B.

Conversely, it is easy to see that the finite linear combinations of morphisms
of the type appearing in the definition of ABA form a complex linear subcat-
egory closed under involution and multiplication by outside elements, but then
by Lemma 1.1.7 so is the subcategory of norm-limits of such combinations.

For our first example of an essential ideal we define and prove some results
on the minimal unitization of a C∗-category, which will be of interest elsewhere.

Definition 1.1.39. For every C∗-category A there is a unital complex linear
∗-category A+, termed the minimal unitization of A, which has hom-spaces

A+(x, y) = A(x, y) for x ̸= y or when x = y and A(x, x) is unital

A+(x, x) = A(x, x)+, the unitization of A(x, x) defined in Definition 1.1.9,

whenever A(x, x) is non-unital.



20 CHAPTER 1. C∗-CATEGORIES

Composition is defined by (a1, λ1)(a2, λ2) = (a1a2 +λ1a2 +λ2a1, λ1λ2) (where
we represent ‘unenhanced’ elements of A by setting λi = 0), and involution
defined by (a, λ)∗ = (a∗, λ).

This unitization is in fact a C∗-category:

Proposition 1.1.40. There is a norm on A+ making it a C∗-category, given
on the enhanced algebras A(x, x)⊕ C by the norm

∥(a, λ)∥ := sup
b∈A(x,x),∥b∥=1

∥ab+ λb∥

and on all other hom-spaces by the norm from A.
Furthermore, the C∗-functor γA : A ↪−→ A+ given by a 7→ (a, 0) on the

enhanced algebras and the identity elsewhere embeds A as an essential ideal in
A+.

Proof. The fact that the unitized endomorphism algebras are C∗-algebras with
the given norm is classical, see e.g. [Weg93, Proposition 2.1.7]. Combining this
with the fact that A is a C∗-category we immediately get the completeness of
all hom-spaces, the C∗-identity and the positivity axiom on all elements, and
the contractive property of composition, except in the case of composing an
‘enhanced’ endomorphism (a, λ) ∈ A(x, x) ⊕ C with a morphism b ∈ A(y, x).
In this case we note that

∥(a, λ)b∥2 = ∥ab+ λb∥2
= ∥(ab+ λb)(ab+ λb)∗∥
= ∥(abb∗ + λbb∗)(a∗, λ)∥
≤ ∥(abb∗ + λbb∗)∥∥(a∗, λ)∥
≤ ∥(a, λ)∥∥bb∗∥∥(a∗, λ)∥
= ∥(a, λ)∥2∥b∥2

where the two inequalities follows from the definitions of ∥(a∗, λ)∥, respectively
∥(a, λ)∥, since b∗b and abb∗ + λbb∗ are endomorphisms of x. Hence A+ is a
C∗-category.

Finally, to see that A is an essential ideal in A+, suppose that an element
(a0, λ) of an enhanced endomorphism algebra satisfies

(a0, λ)a1 = a0a1 + λa1 = 0

for all a1 ∈ A. Then in particular this is true when a1 is in the same algebra
as a0, but by [Weg93, p. 29] this already implies (a0, λ) = (0, 0). Hence A is
essential in A+.

We now describe a universal property of the C∗-category A+. To do this
we need the following definition:
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Definition 1.1.41. Let A be a C∗-category and B be a unital complex linear
category. We denote by

Funu(A,B)

the category of functors from A to B that restrict to unital maps on all unital
endomorphism algebras in A.

Proposition 1.1.42. Let A be a C∗-category and B be a unital complex lin-
ear category. Precomposition with the embedding γA : A ↪−→ A+ induces an
isomorphism of categories

− ◦ γA : Funu(A+,B)→Funu(A,B).

Proof. We first show that −◦γA is surjective on objects, i.e. that if F : A → B
is a complex linear functor which acts unitally on any unital endomorphism
algebras in A, then it extends to a unital complex linear functor F+ : A+ → B.

The functor F+ is defined on the unitized algebras by

F+(a, λ) = F (a) + λ · id .

It is elementary to verify that this gives a unital complex linear functor.
To see that − ◦ γA is injective on objects, note that a unital functor must

have

F+(0, λ) = λ · F (0, 1) = λ · id,

so by linearity the values on A determine F+.
But for any array of B-morphisms indexed by ObA, naturality with respect

to morphisms in A is clearly equivalent to naturality with respect to morphisms
inA+, so−◦γA is also full and faithful, and hence an isomorphism of categories.

Another example of an essential ideal is the following:

Example 1.1.43. The category Hilb of Hilbert spaces and bounded operators
has as an essential ideal the subcategory KHilb of Hilbert spaces and compact
operators.

We will not prove here that KHilb is essential in Hilb as this is a special case
of a result in the next chapter (Proposition 2.3.6).

Every C∗-ideal gives a new topology on the C∗-category containing it; note
that by a topology on a category we will always mean a topology on the hom-
spaces of the category.

Definition 1.1.44. For a C∗-ideal B ⊆ A, the B-relative topology on A(x, y)
is generated by the seminorms of the form

g 7→ ∥fg∥ : f ∈ B(y, z)
g 7→ ∥gh∥ : h ∈ B(w, x)



22 CHAPTER 1. C∗-CATEGORIES

It follows from the contractive property that a net which converges in the
norm on A must converge in the B-relative topology for all B ⊆ A. Note that
even when B = A, the A-relative topology on A is not necessarily the same as
the norm topology, unless A is unital.

We prove here that morphism composition is always continuous in the topol-
ogy relative to an ideal:

Lemma 1.1.45. Suppose B ⊆ A is a C∗-ideal in a C∗-category, and that
(uλ : λ ∈ Λ) and (vµ : µ ∈ M) are two norm-bounded nets in A(y, z) and
A(x, y) respectively. Suppose in addition that there are morphisms u ∈ A(y, z)

and v ∈ A(x, y) such that uλ
λ−→ u and vµ

µ−→ v in the B-relative topology. Then
the net (uλvµ : λ ∈ Λ, µ ∈M) converges to uv in the B-relative topology.

Proof. Let b be an element in B(v, x), and K ∈ R be a bound for ∥uλ∥. Then
note that

∥uλvµb− uvb∥ ≤ ∥uλ(vµb− vb)∥+ ∥uλvb− uvb∥
≤ K∥(vµb− vb)∥+ ∥uλvb− uvb∥

But the first term in the last expression goes to zero as µ varies, and as

vb ∈ B we see the second term goes to zero as λ varies, so uλvµb
λ,µ−−→ uvb in

the norm. We can also prove using the bound on (vµ) that b′uλvµ
λ,µ−−→ b′uv

for b′ ∈ B(z, w).

We follow by defining an ‘internal hom’ for C∗-categories:

Proposition 1.1.46. Suppose A and B are locally small C∗-categories. Then
there is a C∗-category

Fun(A,B)

such that

• Its objects are the C∗-functors F : A → B.

• Its morphisms η : F → F ′ are the natural transformations η : F ⇒ F ′

such that ∥η∥ := supx∈ObA ∥ηx∥ <∞.

• The involution is taken objectwise, i.e. by setting (η∗)x = η∗x.

In general Fun(A,B) is large, but if A is small, then Fun(A,B) is locally small.

Proof. Note that a priori Fun(A,B) is a subcategory of the large category of
all functors from A to B, considered simply as Set0-categories. So Fun(A,B)
is a large category, except in the case where A is small. Furthermore it has an
obvious complex vector space structure on the hom-sets. We show that it’s a
C∗-category with the given norm and involution.

Contractivity in Fun(A,B) follows directly from that on B. Completeness
on the hom-spaces follows as a Cauchy sequence of natural transformations (ηn)
must by definition have Cauchy components (ηx,n), and then by Lemma 1.1.7
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we see that ηx := limn ηx,n assembles to a natural transformation η, which is
the limit of ηn. So Fun(A,B) is a Banach category.

Furthermore, the involution is well-defined: if η is a natural transformation,
then for any morphism a ∈ A(x, x′) we have

η∗x′ ◦ F (a) = (F (a∗) ◦ ηx′)∗ = (ηx ◦ F ′(a∗))∗ = F ′(a) ◦ η∗x

by naturality of η, so we can apply the involution at every object and get
another natural transformation η∗.

To prove the C∗-identity, note simply that

∥η∗η∥ := sup
x∈ObA

∥η∗xηx∥ = sup
x∈ObA

∥ηx∥2 = ( sup
x∈ObA

∥ηx∥)2 = ∥η∥2.

To show that η∗η has positive spectrum, suppose η∗η − λ is not invertible
in Fun(A,B)(F, F )+. Then at least one of the constituent morphisms

η∗xηx − λ ∈ B(F (x), F (x))+

is not invertible, or else the collection of their inverses would easily be seen
to constitute an inverse natural transformation to η. But the morphisms η∗xηx
each have positive spectrum, so λ must be positive and real.

It is useful to study morphisms whose involution is also a (right or left)
inverse.

Definition 1.1.47. In a C∗-category A, a ∗-monomorphism or isometry is a
morphism a ∈ A(x, y) such that a∗a = idx. A ∗-epimorphism is a morphism
a ∈ A(x, y) such that aa∗ = idy. A unitary isomorphism is a morphism
a ∈ A(x, y) such that a∗a = idy and aa∗ = idx.

Example 1.1.48. If B is a C∗-algebra, a morphism in the C∗-category of right
Hilbert B-modules is a unitary equivalence if and only if it is a bijection and
preserves all inner products.

These special isomorphisms allow us to define an appropriate type of equiv-
alence of C∗-categories:

Definition 1.1.49. If A and B are two unital C∗-categories, F : A → B and
G : B → A are C∗-functors, and η : FG ⇒ idB and ϵ : idA ⇒ GF are natural
isomorphisms, then this data is called a unitary equivalence between A and B
if η and ϵ are both not just isomorphisms but unitary isomorphisms at every
object.

The existence of a unitary isomorphism between two objects is not, however,
a stronger condition than that of isomorphism:

Lemma 1.1.50 ([Del12, Proposition 2.6]). If a ∈ A(x, y) is an isomorphism,

then there is a unitary isomorphism from x to y given by a(a∗a)−
1
2 .
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Corollary 1.1.51. Two locally small unital C∗-categories are unitarily equiv-
alent if and only if they are equivalent.

Proof. Simply note that in Definition 1.1.49, the transformation η is an iso-
morphism in Fun(A,A), which is a C∗-category by Proposition 1.1.46. Hence
η can be modified to a unitary isomorphism, which will clearly give a unitary
isomorphism at every object. One can proceed similarly for ϵ.

1.2 Finite direct sums in C∗-categories

We turn now to the matter of direct sums in C∗-categories. A standard result
about additive categories is that finite products and coproducts coincide. In
a C∗-category we ask in addition that their structure maps are related by the
involution:

Definition 1.2.1. Given a C∗-category A and a finite (possibly repeating) list
of objects x1, . . . , xn of A which each have units, we say

⊕n
i=1 xi ∈ ObA is a

direct sum of x1, . . . , xn with structure maps ιi : xi →
⊕n

i=1 xi if

• All ιi are isometries.

•
∑n
i=1 ιiι

∗
i = id⊕n

i=1 xi
.

Remark 1.2.2. As this is a more specific definition than a direct sum in a
general additive category, it might be more appropriate to name this a ∗-direct
sum, but since the more general sums do not appear in this thesis we stick
with ‘direct sum’ for economy. Readers versed in dagger categories may be
interested to know that this notion of direct sum is an example of a dagger
limit as defined in [HK19].

It is evident that a C∗-category can only have direct sums for all finite lists
of elements if it is unital. Despite this, we can enlarge any C∗-category to
include objects that behave something like direct sums, without unitizing the
category:

Proposition 1.2.3. If A is a C∗-category, there is a C∗-category A⊕, termed
the additive hull or additive closure of A, such that:

• Objects of A⊕ are finite, possibly repeating, lists of A-objects.

• A⊕({x1, .., xn}, {y1, .., yk}) := [homA(xi, yj)], that is k×n arrays of mor-
phisms xi → yj, which compose by matrix multiplication.

• The norm on A⊕({x1, .., xn}, {y1, .., yk}) is defined by

∥[fij ]∥ := sup{∥[fij ][bi]∥ : bi ∈ A(w, xi), w ∈ Ob(A), ∥[bi]∥ = 1}

where the norms of columns of morphisms are calculated in Hermitian
fashion: ∥[bi]∥ :=

√
∥
∑
i b

∗
i bi∥.
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• The involution is given on f = [fij ] ∈ A⊕({x1, .., xn}, {y1, .., yk}) by
f∗ := [f∗ji].

Proof. It is evident that A⊕ is a normed complex linear category with involu-
tion so we need to show that its hom-spaces are complete, that multiplication
is contractive, and finally that the C∗-identity and the positivity requirement
are satisfied.

Contractivity is obvious: if we have bi ∈ A(w, xi) for 1 ≤ i ≤ n such that
∥[bi]∥ = 1, then for all

[gjl] ∈ A⊕({y1, .., yk}, {z1, .., zm}), [fij ] ∈ A⊕({x1, .., xn}, {y1, .., yk})

we have
∥[gjl][fij ][bi]∥ ≤ ∥[gjl]∥∥[fij ][bi]∥ ≤ ∥[gjl]∥∥[fij ]∥∥[bi]∥

where we have simply used the definition of the matrix norm twice. Hence
∥[gjl][fij ]∥ ≤ ∥[gjl]∥∥[fij ]∥.

To show the norm makes each hom-space complete, we show it can be
sandwiched uniformly by the maximum of the norms of matrix entries. Note
that for any matrix [fij ] ∈ A⊕({x1, .., xn}, {y1, .., yk}) and any pair of integers
1 ≤ i0 ≤ n, 1 ≤ j0 ≤ k, we can define a vector [bi] ∈ [A(xi0 , xi)] with entries

bi0 =
f∗
i0j0

∥fi0j0
∥ , bi = 0 for i ̸= i0. We then see that

∥fi0j0∥ = ∥[fij ][bi]∥ ≤ ∥[fij ]∥

as ∥[bi]∥ = 1 so maxi,j ∥fij∥ ≤ ∥[fij ]∥. At the same time, writing [fij ] as a
sum of n × k matrices with only one non-zero entry, one easily obtains that
∥[fij ]∥ ≤ nkmaxi,j ∥fij∥. Hence we see the norms ∥[fij ]∥ and maxi,j ∥fij∥ are
topologically equivalent.

Now suppose we have a sequence of matrices ([fsij ])s∈N in the hom space
A⊕({x1, . . . , xn}, {y1, . . . , yk}) which is Cauchy in the matrix norm. Then it
is Cauchy in the maximum norm, but then clearly each sequence fsij of entries
is Cauchy and has a limit fij . Assembling these entries we get a matrix [fij ]
which is clearly the limit of [fsij ] in the maximum norm, and hence in the matrix
norm. Hence we see the hom space A⊕({x1, .., xn}, {y1, .., yk}) is complete in
this norm.

We prove the C∗-identity as follows: define a ‘sesquilinear form’

⟨−,−⟩ : (A(p, q1)⊕ · · · ⊕ A(p, qn))
2 → A(p, p)

by ⟨[ai], [bi]⟩ = a∗1b1+ · · ·+a∗nbn. Note that this form is related to the norm we
defined earlier by ∥⟨[ai], [ai]⟩∥ = ∥[ai]∥2. Note also that by a standard Cauchy-
Schwartz argument, ∥⟨[ai], [bi]⟩∥ ≤ ∥[ai]∥∥[bi]∥, and it also follows from the
definition of our form that

⟨M [ai], [bj ]⟩ = ⟨[ai],M∗[bj ]⟩ for all [ai] ∈ A(p, q1)× · · · × A(p, qn),
[bj ] ∈ A(p, r1)× · · · × A(p, rk),
M ∈ A⊕({q1, . . . , qn}, {r1, . . . , rk}).
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Now whenever we have a matrix [fij ] ∈ A⊕({x1, .., xn}, {y1, .., yk}) and a col-
umn [bi] ∈ [A(z, xi)] such that ∥[bi]∥ = 1, we have

∥[fij ][bi]∥2 = ∥⟨[fij ][bi], [fij ][bi]⟩∥ = ∥⟨[bi], [f∗ji][fij ][bi]⟩∥ ≤ ∥[f∗ji][fij ]∥∥[bi]∥2
= ∥[f∗ji][fij ]∥.

It then follows from the definition of the norm that ∥[fij ]∥2 ≤ ∥[f∗ji][fij ]∥.
By Lemma 1.1.24 this will be enough to deduce the C∗-equality.

Finally we must show that [f∗ji][fij ] ∈ A⊕({x1, .., xn}, {x1, .., xn}) has pos-
itive spectrum. Note that since for C∗-algebras the spectrum requirement
follows from the C∗-identity (see e.g. [Mur90, Theorem 2.2.5]), the reason-
ing above shows that the endomorphism algebras of A⊕ are C∗-algebras. For
brevity, write

{x1, . . . , xn} = x, {y1, . . . , yk} = y, {x1, . . . , xn, y1, . . . , yk} = x ⊔ y,

and note that the spaces A⊕(x,y), A⊕(y,x), and A⊕(x,x) can each be em-
bedded isometrically in the C∗-algebra A⊕(x ⊔ y,x ⊔ y), in a way compatible
with the involution and composition. Hence regarding [fij ] as an element of
the algebra A⊕(x ⊔ y,x ⊔ y), we see that

[f∗ji][fij ] ∈ A⊕(x,x) ⊆ A⊕(x ⊔ y,x ⊔ y)

is positive in A⊕(x ⊔ y,x ⊔ y) by Lemma 1.1.13, but then it is positive in
A⊕(x,x) by Lemma 1.1.17.

This completes the proof that A⊕ is a C∗-category. Finally we allay any
size-theoretical concerns and show that A⊕ is of the same size as A is: note
firstly that if ObA belongs to Seti then so does the collection of finite lists of
elements of ObA. Secondly we have an isomorphism of Banach spaces

A⊕({x1, .., xn}, {y1, .., yk}) ∼= ⊕1≤i≤n,1≤j≤k homA(xi, yj).

So as Bani is cocomplete for i = 0, 1 and direct sums are coproducts of Banach
spaces, the claim follows.

For all A, there is an evident faithful functor A ↪−→ A⊕: it sends each object
to its corresponding single-object list and each morphism to a 1× 1 matrix. It
has the following property:

Lemma 1.2.4. If A is a C∗-category and B is a complex linear category which
admits all finite direct sums, then every complex linear functor

F : A→B

factors through the embedding A ↪−→ A⊕ to a unique extension

F⊕ : A⊕ → B.

If B is a ∗-category and F is a ∗-functor, then so is F⊕.
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Proof. There is an obvious extension F⊕ on objects that sends a list of A-
objects {x1, . . . , xn} = x to F (x1)⊕ · · · ⊕ F (xn). As to the morphisms from x
to y = {y1, .., yk}, we define the action

F⊕ : A⊕(x,y) → B(F (x1)⊕ · · · ⊕ F (xn), F (y1)⊕ · · · ⊕ F (yk))

by [fij ] 7→
∑
i,j κjκ

∗
j ◦ F (fij) ◦ ιiι∗i , where ιi and κj are the structure maps of

the direct sums of the F (xi) and the F (yj) respectively. This map is clearly
linear and intertwines the involutions if they exist. The uniqueness and the
final statement are left to the reader.

It was observed in the proof of Proposition 1.2.3 that in particular, for every
finite list {x1, .., xn} of objects there exists a C∗-algebra

Mx1,..,xn(A) := A⊕({x1, .., xn}, {x1, .., xn}),

and that these C∗-algebras embed into each other isometrically along list in-
clusions. We can therefore form direct limits along these inclusions:

Definition 1.2.5. For a small C∗-category, its matrix algebra Mat-A is the
C∗-algebra obtained as the direct limit2 of the C∗-algebras Mx1,..,xn(A) along
all (not necessarily order-preserving) inclusions {x1, .., xn} ↪−→ {y1, . . . yn+k} of
non-repeating finite lists of A-objects.

We note that Mat-A is unital if and only if A is unital and has a finite set
of objects. Since the inclusions between the matrix algebras are isometric, the
inclusions Mx1,..,xn

(A) ↪−→ Mat-A are isometric too. It is elementary to prove
that Mat-A is isomorphic as a C∗-algebra to the Banach space direct sum⊕

x,y∈ObA A(x, y), where this space has multiplication and involution given by

‘coordinate-wise’ composition and involution, and the obvious ℓ2-norm. This
algebra is described as AA in [Joa03] and named the ‘category algebra’ in
[Fer23].

Example 1.2.6. If A = C*
max(G) is the maximal groupoid C∗-category on a

discrete groupoid G, then Mat-A is the classical full groupoid C∗-algebra of G.

We will return to the matrix algebra construction in Section 3.4.

We can use the 2 × 2 matrix C∗-algebras Mx,y(A) to generalize a number
of results about C∗-algebras to the context of C∗-categories.

Lemma 1.2.7. For any u ∈ A(x, y), there exist morphisms v ∈ A(x, y) and
w ∈ A(x, x) such that u = vw, as well as morphisms s ∈ A(y, y), t ∈ A(x, y)
such that u = st.

2See e.g. [Mur90, Section 6.1] for an exposition of the theory of direct limits of C∗-
algebras.
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Proof. Consider the element um =

[
0 0
u 0

]
∈ Mx,y(A): then a standard result

about C∗-algebras (see for example [Ped18, p. 1.4.6] where we set α = 1
2 ) states

that there is an element v =

[
v11 v12
v21 v22

]
∈Mx,y(A) such that um = v(u∗mum)

1
4 .

The bottom-left corner of this matrix equation reads u = v21(u
∗u)

1
4 where

v21 ∈ A(x, y). Hence setting v = v21, w = (u∗u)
1
4 proves the first part of the

lemma. Applying this procedure instead to u∗ ∈ A(y, x) proves the second
part.

Recall that if A is a C∗-algebra, an approximate unit is a net (uλ) of positive
elements in A such that for all λ we have ∥uλ∥ ≤ 1 and for all a ∈ A we have

uλa
λ−→ a and auλ

λ−→ a. We deduce from Lemma 1.2.7 a useful fact about the
behaviour of approximate units in C∗-categories:

Corollary 1.2.8. If (eλ) is an approximate unit for the C∗-algebra A(x, x),
then for all a ∈ A(x, y) we have ∥aeλ−a∥ → 0 and for all b ∈ A(w, x) we have
∥eλb− b∥ → 0.

Proof. Factorizing a = vw as in Lemma 1.2.7, we see

∥aeλ − a∥ = ∥vweλ − vw∥ ≤ ∥v∥∥weλ − w∥ λ−→ 0.

The other case follows immediately from the first by setting y = w and applying
the involution.

Lemma 1.2.9. If b ∈ B(y, y) is a positive element and a ∈ A(x, y) is any
morphism, then the inequality

a∗ba ≤ ∥b∥a∗a

holds in A(x, x).

Proof. By Lemma 1.1.17 the element

[
0 0
0 b

]
is positive in Mx,y(A). So apply-

ing Lemma 1.1.20 to the elements

[
0 0
0 b

]
and

[
0 0
a 0

]
we see that

[
a∗ba 0
0 0

]
≤

[
∥b∥a∗a 0

0 0

]
in Mx,y(A), but then by Lemma 1.1.17 again we see that a∗ba ≤ ∥b∥a∗a holds
in A(x, x).

We can also now deduce two fundamental results on essential ideals, the
first being that the relationship of being an essential ideal is transitive:

We end this section by treating briefly a sort of Cauchy completion for
unital C∗-categories:
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Definition 1.2.10. If A is a C∗-category, a projection on x is a morphism
p ∈ A(x, x) such that p = p∗ and p2 = p. We say p splits if for some y, z ∈ ObA
there is an isomorphism u : x

∼=−→ y ⊕ z such that

upu−1 =

[
idy 0
0 0

]
in which case y is termed the image of p. We say A is idempotent complete if
every projection splits.

Proposition 1.2.11. For any unital C∗-category A, there is a unital C∗-
category

A♮

termed the idempotent completion of A, such that

• Its objects are pairs (x, p) where p ∈ A(x, x) is a projection.

• Its morphisms from (x, p) to (y, q) are those morphisms a in A(x, y) such
that qa = a = pa.

The C∗-category A♮ is idempotent complete, contains the isometric image
of A by sending x to (x, idx), and if B is an idempotent complete C∗-category,
any unital C∗-functor A → B extends to a unital C∗-functor A♮ → B.

Proof. These claims are all proven in [DT14, Section 2.4], save for the one on
enrichment. To allay any concerns about size enlargement, note that by defi-
nition A♮((x, p), (y, q)) is the equalizer of three morphisms A(x, y) → A(x, y),
namely postcomposition with q, precomposition with p, and the identity. So
as Ban0 and Ban1 are complete by assumption, A♮ is enriched in the same
category as A.

1.3 The multiplier category

Multiplier algebras are a commonplace construction in C∗-algebra theory that
offer a way of unitizing a C∗-algebra in a universal way. In this section we intro-
duce a generalization of the multiplier algebra construction to C∗-categories.
This ‘multiplier category’ was first defined in [Kan01] using different techniques
than the ones we use here. It was first formulated in a form alike to the one
presented here in [Vas07, Section 2].

We begin by defining the morphisms in the multiplier category.

Definition 1.3.1. If A is a C∗-category and x, y ∈ ObA, a multiplier mor-
phism from x to y is a pair of maps (L,R), where:

• L : A(x, x) → A(x, y) is a map of right A(x, x)-modules.

• R : A(y, y) → A(x, y) is a map of left A(y, y)-modules.

• For all f ∈ A(x, x), g ∈ A(y, y), we have R(g) ◦ f = g ◦ L(f).
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The maps in a multiplier morphism are automatically complex linear and
bounded:

Lemma 1.3.2 (c.f. [Weg93, Proposition 2.2.8]). If L : A(x, x) → A(x, y) and
R : A(y, y) → A(x, y) form a multiplier morphism from x to y, then L and R
are complex linear and bounded with ∥L∥ = ∥R∥

Proof. To show L is a complex linear map, note for all morphisms b ∈ A(y, y)
and a1, a2 ∈ A(x, y) and λ ∈ C that

bL(a1 + λa2) = R(b)(a1 + λa2) = b(L(a1) + λL(a2))

so letting b vary over an approximate unit and applying Corollary 2.1.9 we see
that L(a1 + λa2) = L(a1) + λL(a2).

To show L and R are bounded we appeal to the closed graph theorem (see
e.g. [Con85, Theorem 12.6]) in functional analysis, which states that a map
of Banach spaces is continuous (and hence bounded) if and only if its graph
is closed. To show the graph of L is closed, suppose that xn ∈ A(x, x) is a

sequence converging to x and that L(xn)
n−→ y. Then for all b ∈ A(y, y) and

n ∈ N we have

∥b(L(x)− y)∥ ≤ ∥b(L(x)− L(xn))∥+ ∥b(L(xn)− y)∥
≤ ∥R(b)∥∥x− xn∥+ ∥b∥∥L(xn)− y∥.

Hence letting n→ ∞ we see b(L(x)−y) = 0 so applying Corollary 2.1.9 we see
L(x) = y. So the graph of L is closed, and that of R is by a similar argument.

To see the norms are equal note that for each a ∈ A(x, x),

∥Lx(a)∥ = sup
b∈A(y,y),∥b∥≤1

∥bL(a)∥ = sup
b∈A(y,y),∥b∥≤1

∥R(b)a∥ ≤ ∥R∥∥a∥.

Hence ∥L∥ ≤ ∥R∥ and of course by a similar argument ∥R∥ ≤ ∥L∥.

It will be useful for some purposes to have an alternative definition of mul-
tiplier morphisms.

Lemma 1.3.3. A multiplier morphism from x to y can equivalently be defined
as two arrays of maps

{Lw : A(w, x) → A(w, y)}

and
{Rz : A(y, z) → A(x, z)},

where w and z range over all objects of A, such that:

• For f ∈ A(w, x), h ∈ A(w′, w), we always have Lw(f) ◦ h = Lw′(f ◦ h).

• For f ∈ A(y, z), h ∈ A(z, z′), we always have h ◦Rz(f) = Rz′(h ◦ f).

• For all f ∈ A(w, x), h ∈ A(y, z), we have Rw(h) ◦ f = h ◦ Lz(f).
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In addition, all maps in such an array are necessarily complex linear and
bounded, and we have

sup
z

∥Lz∥ = ∥Lx∥ = ∥Ry∥ = sup
w

∥Rw∥.

Proof. To go from L : A(x, x) → A(x, y) to an array {Lw : w ∈ ObA}, use
Lemma 1.2.7 on a morphism f ∈ A(w, x) to get f = e ◦ g for e ∈ A(x, x), then
set Lw(f) := L(e) ◦ f ′. To show this is well-defined, suppose e ◦ g = e′ ◦ g′ are
two such factorizations of f . Then for all u ∈ A(y, y) we have

u ◦ Lx(e) ◦ g = Ry(u) ◦ e ◦ g = Ry(u) ◦ e′ ◦ g′ = u ◦ Lx(e′) ◦ g′

so letting u vary over an approximate unit we see by Corollary 2.1.9 that
Lx(e) ◦ g = Lx(e

′) ◦ g′. Hence {Lw} is well-defined, and it is easily shown to
satisfy the axioms above: if f = e ◦ g as above and h ∈ A(w′, w) then we can
factor e out of f ◦ h and see that

Lw(f) ◦ h = Lx(e) ◦ g ◦ h = Lw′(e ◦ g ◦ h) = Lw′(f ◦ h).

We can similarly go from R to an array {Rz} satisfying the given require-
ments by factoring an endomorphism of y out of any morphism with source
y. To see that the final axiom holds for f ∈ A(w, x) and h ∈ A(y, z), write
f = e ◦ g where e ∈ A(x, x) and h = k ◦ ℓ where ℓ ∈ A(y, y). Then

Rw(h) ◦ f = k ◦R(ℓ) ◦ e ◦ g = k ◦ ℓ ◦ L(e) ◦ g = h ◦ Lw(f)

For the other direction, clearly an array of multipliers as above gives a
multiplier morphism by restricting to w = x and z = y. Using the factorization
lemma as above then tells us {Lw} is determined by Lx, and similarly {Rz} is
determined by Rz: this gives a bijection between arrays and single multipliers.

It follows exactly as in the proof of the previous lemma that these maps
are complex linear and bounded that ∥Lx∥ = ∥Ry∥. To see that ∥Lw∥ ≤ ∥Lx∥,
note simply that if (uλ) is an approximate unit for A(x, x), then we have

∥Lw(f)∥ = ∥ lim
λ
Lw(uλ ◦ f)∥ = ∥ lim

λ
(Lx(uλ) ◦ f)∥ = lim

λ
∥Lx(uλ) ◦ f∥.

But then as ∥uλ∥ ≤ 1 for each λ, we see that ∥Lx(uλ) ◦ f∥ ≤ ∥Lx∥∥f∥ using
contractivity. Hence ∥Lw∥ ≤ ∥Lx∥. The case ∥Rz∥ ≤ ∥Ry∥ follows similarly.

We call the above definition the multi-object definition of a multiplier, and
the first one the single-object definition. We are now ready to define the mul-
tiplier category of a C∗-category.

Proposition 1.3.4. For a C∗-category A, there is a C∗-category MA called
the multiplier category of A, such that

• The objects of MA are identical to those of A.
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• The hom-space MA(x, y) is the collection of multiplier morphisms (L,R)
from x to y.

• The norm on MA(x, y) is defined by ∥(L,R)∥ := ∥Lx∥ = ∥Ry∥.

• The involution MA(x, y) → MA(y, x) is defined on multipliers (in their
multi-object characterization) by sending ({Lw}, {Rz}) ∈ MA(x, y) to
({L∗

u}, {R∗
z}) ∈ MA(y, x) where

L∗
u :

A(u, y) → A(u, x)
g 7→ Ru(g

∗)∗
and

R∗
z : A(x, z) → A(y, z)

f 7→ Lz(g
∗)∗.

• The composition law on MA is defined by setting for two multipliers
({Lu}, {Rz}) ∈ MA(x, y) and ({L′

u}, {R′
z}) ∈ MA(w, x):

({Lu}, {Rz}) ◦ ({L′
u}, {R′

z}) := ({Lu ◦ L′
u}, {R′

z ◦Rz}).

Proof. The composition is clearly contractive as

sup
u∈ObA

∥Lu ◦ L′
u∥ ≤ sup

u∈ObA
∥Lu∥ sup

u∈ObA
∥L′

u∥.

It is clear from the single-object definition of multiplier morphisms that the
space MA(x, y) is complete, and MA has obvious identity morphisms given
by identity maps on hom-spaces.

Next, we show that for any morphism T = (L,R) ∈ MA(x, y) that the
morphism T ∗T ∈ MA(x, x) has norm ∥L∥2. Note that for all a ∈ A(x, y) such
that ∥a∥ = 1, we have

∥(L∗ ◦ L)(a)∥ ≥ ∥a∗ ◦ (L∗ ◦ L)x(a)∥
= ∥a∗ ◦Rx(Lx(a)∗)∗∥
= ∥(Rx(Lx(a)∗) ◦ a)∗∥
= ∥Rx(Lx(a)∗) ◦ a∥
= ∥Lx(a)∗ ◦ Lx(a)∥
= ∥L(a)∥2

so ∥T ∗T∥ = ∥L∗ ◦ L∥ ≥ ∥L∥2 = ∥T∥2, and by Lemma 1.1.24 we see that
∥T ∗T∥ = ∥T∥2.

Finally we show T ∗T ∈ MA(x, x) is positive. Note that the above ar-
guments already show that MA(x, x) is a C∗-algebra: in fact, from the first
characterization of multiplier morphisms it is clear that MA(x, x) is simply
the multiplier algebra of the C∗-algebra A(x, x). By the functoriality of the
involution, we also see that T ∗T is a self-adjoint element of the C∗-algebra
MA(x, x), so by Lemma 1.1.14 it has real spectrum. Suppose λ ∈ Spec(T ∗T ).
Since T ∗T is normal, the continuous functional calculus (see Lemma 1.1.23)
states that the unital subalgebra of MA(x, x) generated by T ∗T is isomor-
phic to the algebra of continuous functions on the open set Spec(T ∗T ), so
taking bump functions fn ∈ C(Spec(T ∗T )) ⊆ MA(x, x) around λ, we get a
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sequence (fn) such that ∥fn∥ = 1 for each n, and (T ∗T − λ1)fn → 0. Writing
T = (L,R), we get f∗nT

∗Tfn = L(fn)
∗L(fn), so multiplying the above limit on

the left by f∗n, we obtain L(fn)
∗L(fn)− λf∗nfn → 0. But now if λ < 0, this is

the sum of two positive elements, so by Lemma 1.1.18, it is again positive and
by Lemma 1.1.21 we have

∥L(fn)∗L(fn)− λf∗nfn∥ ≥ max(∥L(fn)∗L(fn)∥, ∥λf∗nfn∥).

Hence as ∥λf∗nfn∥ = |λ|, this contradicts L(fn)
∗L(fn) − λf∗nfn → 0, and we

must have λ ≥ 0.
Finally we need to show that if A is enriched in Bani for i = 0, 1, then so is

MA. But note that the first definition of multiplier morphisms is essentially a
description ofMA(x, y) as a pullback of [A(x, x),A(x, y)] and [A(y, y),A(x, y)]
over [A(x, x)⊗A(y, y),A(x, y)]. So as Bani is closed and complete, MA(x, y)
lives in Bani.

Just like the multipler C∗-algebra, the multiplier C∗-category receives a
natural embedding from the original algebra:

Proposition 1.3.5. There is a faithful C∗-functor

κA : A ↪−→ MA

which is the identity on objects and sends each morphism a to the pair of
multipliers κA(a) = (ℓa, ra) given by pre- and postcomposition with a. The
functor κA embeds A as an essential ideal in MA and if A is unital, κA is
also full and hence an isomorphism.

Proof. To show κA is faithful, suppose (ℓa, ra) = 0. Then in particular we have
∥ra(a∗)∥ = ∥a∗a∥ = 0 so a = 0.

Note that (L,R)◦(la, ra) = (lL(a), rL(a)) and (la, ra)◦(L,R) = (lR(a), rR(a)),
so A is an ideal. Finally note that it satisfies the definition of an essential ideal.

If A is unital then the multiplier axioms immediately give for any multiplier
(L,R) ∈ MA(x, y) that (L,R) = κA(a) where a = L(idx) = R(idy).

The category MA also has a universal property akin to that of multiplier
C∗-algebras:

Lemma 1.3.6. If A ↪−→ D is an embedding of A as an ideal of a unital C∗-
category, there exists a unique extension F : D → MA to D of the embedding
κA : A ↪−→ MA and this extension is faithful if and only if A is essential in D.
Furthermore, among all C∗-categories containing A as an ideal, MA is unique
up to isomorphism with this property.

Proof. The C∗-functor F : D → MA is defined by F (d) = (Ld, Rd) where we
set Ld(a) = da and Rd(b) = bd: these elements are in A by the ideal property.
F is easily verified to be an extension of the embedding κA : A ↪−→ MA.

If F is faithful, then it acts isometrically on hom-spaces, and clearly A is
essential in D since it is essential in MA. Conversely, suppose A is essential
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in D, and furthermore that two elements d, d′ ∈ D(x, y) map to the same
multiplier in MA; then by essentiality of A in D we get d− d′ = 0, and hence
see that the functor D → MA is faithful.

The uniqueness part is straightforward; if C is another category with the
stated property, we get an embedding MA ↪−→ C since A is essential in MA.
But we also get a map C → MA, which can easily be checked to be a left and
right inverse by calling on the uniqueness.

From now on we identify A with its image under κA wherever convenient.
Recall from Definition 1.1.44 that the topology relative to a subcategory A
of a C∗-category B is the one generated by the seminorms given by pre- and
postcomposing with morphisms in A.

Definition 1.3.7. The A-relative topology onMA is called the strict topology.

This name directly generalizes the analogous topology for C∗-algebras (see
e.g. [APT73]) and agrees with that in [AV20] and [BE21].

Lemma 1.3.8. The morphisms in A are dense in MA in the strict topology.

Proof. We want to show that for any multiplier T = (L,R) ∈ MA(x, y),
there is a net of morphisms in A(x, y) ⊆ MA(x, y) converging to (L,R) in
the A-relative topology. Let (eλ) be an approximate unit for A(x, x). We’re

going to show that κA(L(eλ))
λ−→ T in the A-relative topology. We note that

for all w ∈ ObA and a ∈ A(w, x), we have L(eλ)a = L(eλa)
λ−→ L(a) by

Corollary 1.2.8 and the continuity of L. For the other direction note that for

all z ∈ ObA and b ∈ A(y, z), we have bL(eλ) = R(b)eλ
λ−→ R(b), again by

Corollary 1.2.8.

We note finally that the multiplier operation M(−) commutes with the
additive closure (−)⊕ defined in Section 2 of this chapter.

Proposition 1.3.9. There is a canonical isomorphism of C∗-categories

(MA)⊕ ∼= M(A⊕)

Proof. Clearly these two categories have the same collections of objects, that is:
finite lists of A-objects. It suffices therefore, to exhibit a natural isomorphism

M(A⊕)(x,y) ∼= (MA)⊕(x,y) (1.3.1)

for any two lists x = {x1, . . . , xn},y = {y1, . . . , yk}, which is moreover nat-
ural in the objects and intertwines the involutions: by Corollary 1.1.35 this
isomorphism must then be isometric.

Using the first definition of multiplier morphisms, an element in the left set
in 1.3.1 consists of a multiplier pair (L,R) where the left multiplier is a map
L : A⊕(x,x) → A⊕(x,y). An element in the right set consists of a k×n array
of multipliers (Li,j , Ri,j) ∈ MA(xi, xj), where Li,j : A(xi, xi) → A(xi, yj), or
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alternatively, by Lemma 1.3.3, a multiplier Luxi,yj : A(u, xi) → A(u, yj) for
each u ∈ ObA.

So starting with an element in the right set, we can let the variable u above
range over {x1, . . . , xn} to assemble a map L : A⊕(x,x) → A⊕(x,y), and
similarly from all the different right multipliers A(yj , yl) → A(xi, yl) we can
assemble one single right multiplier R : A⊕(y,y) → A⊕(x,y). Hence we obtain
a map in the leftward direction in 1.3.1.

To go in the other direction, we start with a left multiplier from the left
set L : A⊕(x,x) → A⊕(x,y) as above. Since L(f)h = L(fh), letting h vary
over matrices in Mx(A) whose only non-zero entry is an approximate unit on
the diagonal, we see L must send matrices whose only nonzero entry is in the
(i, i)-th place to matrices whose only nonzero column is the i-th. Hence L
restricts to multipliers Li,j : A(xi, xi) → A(xi, yj) for 1 ≤ j ≤ k, and the right
multiplier R decomposes similarly, giving an element of the right set in 1.3.1.
These operations are easily checked to be mutual inverses.

1.4 Non-degenerate functors

As C∗-functors are often between non-unital categories, it is not always possible
to ask for them to be unital. This throws up a variety of problems, which have
to be fixed by requiring our C∗-functors to be ‘approximately unital’. One way
of formulating this requirement is to ask that a C∗-functor A → B preserve
approximate units of endomorphism algebras; it is useful, however, to generalize
at this point instead to C∗-functors A → MB.

Definition 1.4.1. A C∗-functor F : A → MB is said to be non-degenerate
when for every x, y ∈ ObA, the subspace FA(y, y) ◦ B(Fx, Fy) (given by the
span of all elements of the form F (a) ◦ b where a ∈ A(y, y), b ∈ B(Fx, Fy)) is
norm-dense in B(Fx, Fy). A C∗-functor F : A → B is called non-degenerate if
its composition with the inclusion κB : B ↪−→ MB is non-degenerate.

We take this definition from [AV20], where non-degenerate functors form
the 1-morphisms in the 2-category C∗-Lin.

We want to provide several equivalent formulations of non-degeneracy, but
first we need several technical lemmas on Banach spaces to streamline the
proofs.

Lemma 1.4.2. If V and W are Banach spaces, D is a subset of V whose span
is dense, and (Tλ : V →W ) is a uniformly bounded net of operators such that

∥Tλ(d)∥
λ−→ 0 for each d ∈ D, then in fact ∥Tλ(v)∥

λ−→ 0 for each v ∈ V .

Proof. Let ⟨D⟩ denote the span of V , and note that clearly from the hypothesis

∥Tλ(d)∥
λ−→ 0 for each d ∈ ⟨D⟩.

Let K > 0 be a uniform bound on the net, and for any v ∈ V pick a
sequence (dn) of elements in ⟨D⟩ converging to v. For an arbitrary ϵ > 0 pick
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an integer n such that ∥dn − v∥ ≤ ϵ
K . Then for each λ we have

∥Tλ(v)∥ ≤ ∥Tλ(v − dn)∥+ ∥Tλ(dn)∥
≤ ϵ+ ∥Tλ(dn)∥.

Hence taking lim supλ on both sides we obtain that lim supλ ∥Tλ(v)∥ ≤ ϵ, hence
limλ ∥Tλ(v)∥ = 0.

Corollary 1.4.3. Suppose V is a Banach space, D is a subset of V whose span
is dense, and (Uλ : V → V ) is a uniformly bounded net of operators such that

Uλ(d)
λ−→ d for each d ∈ D. Then we have in fact Uλ(v)

λ−→ v for each v ∈ V .

Proof. Simply take W = V , Tλ = Uλ − idV and apply Lemma 1.4.2.

The above lemmas will help us with many results involving the strict topol-
ogy. We will also often need to extend bounded operators from a dense subset
to an entire space:

Lemma 1.4.4. If M and N are Banach spaces, M ′ is a dense subspace of
M and ϕ′ : M ′ → N is a bounded linear map with ∥ϕ′∥ = L, then ϕ′ extends
uniquely to a map ϕ : M → N of Banach spaces with ∥ϕ∥ = L. If ϕ′ is an
isometry then so is ϕ, and if in addition ϕ′ has dense image, then ϕ is an
isometric isomorphism of Banach spaces.

Proof. The fact that ϕ extends to a map on M with the same norm is an
instance of continuous linear extension, see e.g. [RS80, Theorem I.7]. To show
that ϕ is an isometry when ϕ′ is, simply write any m ∈ M as a limit of a
sequence of elements mn ∈M ′, and then note

∥ϕ(m)∥ = ∥ϕ(lim
n
mn)∥ = lim

n
∥ϕ(mn)∥ = lim

n
∥ϕ′(mn)∥ = lim

n
∥mn∥ = ∥m∥.

Finally, we show that if ϕ′ has dense image, then ϕ must be surjective. Take
for an arbitrary p ∈ N a sequence (mn) in M

′ such that ϕ′(mn) → p. Then by
the isometry property it follows that mn is Cauchy, and letting m be the limit
of (mn) we easily see that ϕ(m) = p. Hence ϕ is an isometric isomorphism of
Banach spaces.

We can now show the equivalence of several definitions of a non-degenerate
functor:

Theorem 1.4.5. If A and B are C∗-categories, the following criteria on a
C∗-functor F : A → MB are equivalent:

1. F is non-degenerate.

2. For all x, y ∈ ObA, the subspace B(Fx, Fy) ◦ FA(x, x) is norm-dense in
B(Fx, Fy).

3. If x, y ∈ Ob(A) and (uλ)λ∈Λ is an approximate unit for A(y, y), then for
each morphism b ∈ B(Fx, Fy) we have F (uλ) ◦ b→ b in the norm.
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4. If x, y ∈ Ob(A) and (uλ)λ∈Λ is an approximate unit for A(x, x), then for
each morphism b ∈ B(Fx, Fy) we have b ◦ F (uλ) → b in the norm.

5. F extends (uniquely) to a unital C∗-functor F̄ : MA → MB, which on
norm-bounded subsets is in addition continuous with respect to the strict
topologies on MA and MB, as defined in Definition 1.3.7.

Proof. Criteria 1 and 2, as well 3 and 4 are obviously equivalent using the
involution.

Criterion 3 clearly implies 1 since F (uλ) ◦ b ∈ F A(y, y) ◦ B(Fx, Fy). To
see that 1 implies 3, note simply that if a ∈ A(y, y) and b ∈ B(Fx, Fy),
then F (uλ) ◦ F (a) ◦ b = F (uλ ◦ a) ◦ b λ−→ F (a) ◦ b since F is norm-continuous
(Proposition 1.1.34).

Criterion 5 clearly implies 3, since approximate units are nets strictly con-
verging to the identity. It remains finally to show that criteria 1 through 4
together imply 5:

We use in this proof the single-object definition of multipliers (see Defi-
nition 1.3.1). Take any multiplier T = (L,R) ∈ MA(x, y). We define the
left component of F̄ (T ) = (L̄, R̄) as follows. For any morphism of the form
F (a) ◦ b ∈ FA(x, x) ◦ B(Fx, Fx), we set

L̄(F (a) ◦ b) = F (L(a)) ◦ b ∈ B(Fx, Fy).

To show this gives a well-defined map FA(x, x) ◦ B(Fx, Fx) → B(Fx, Fy),
suppose F (a)◦b = F (a′)◦b′ and let (uλ)λ∈Λ be an approximate unit for A(y, y).
For all λ ∈ Λ we have

F (uλ) ◦ F (L(a)) ◦ b = F (R(uλ)) ◦ F (a) ◦ b
= F (R(uλ)) ◦ F (a′) ◦ b′
= F (uλ) ◦ F (L(a′)) ◦ b′.

Hence by criterion 3, taking limits we get F (L(a)) ◦ b = F (L(a′)) ◦ b′. The
equality L̄(F (a) ◦ b) = limλ F (R(uλ)) ◦ F (a) ◦ b also gives ∥L̄∥ ≤ ∥R∥. Hence
L̄ is a bounded map defined on a subset of B(Fx, Fx) which is norm-dense by
criterion 1. So by Lemma 1.4.4 it extends uniquely to a map B(Fx, Fx) →
B(Fx, Fy). The property defining right B(Fx, Fx)-module morphisms clearly
holds on the norm-dense subset FA(x, x) ◦ B(Fx, Fx), so again by uniform
continuity it holds on all of B(Fx, Fx). Hence L̄ gives a valid left multiplier
B(Fx, Fx) → B(Fx, Fy).

Similarly for b ◦ F (a) ∈ B(Fy, Fy) ◦ FA(y, y), we set

R̄(b ◦ F (a)) = b ◦ F (R(a))

and then by criteria 2 and 4 this extends to a right multiplier R̄ : B(Fy, Fy) →
B(Fx, Fy). The final axiom stating R̄(b) ◦ b′ = b ◦ L̄(b′) for b ∈ B(Fy, Fy) and
b′ ∈ B(Fx, Fx) is obvious when b ∈ FA(x, x)◦B(Fx, Fx) and b′ ∈ B(Fy, Fy)◦
FA(y, y) and again obtained by uniform continuity of L̄, R̄ on the closure. This
concludes the verification that (L̄, R̄) is a valid multiplier in MB(F (x), F (y))
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The assignment (L,R) 7→ (L̄, R̄) is easily checked to be complex linear
and compatible with the involutions and compositions, hence it extends to a
C∗-functor F̄ : MA → MB, which clearly restricts to F on A.

We show next that this extension is strictly continuous on norm-bounded
sets. Suppose (Tγ = (Lγ , Rγ))γ∈Γ is a net of multipliers in MA(x, y) whose
norm is bounded by K and which strictly converge to 0; that is, for every a ∈
A(x, x) we have Lγ(a)

γ−→ 0 and for every a ∈ A(y, y) we have Rγ(a)
γ−→ 0. We

have to show for any b ∈ B(Fx, Fx) that L̄γ(b)
γ−→ 0 and for any b ∈ B(Fy, Fy)

that R̄γ(b)
γ−→ 0.

Note that for any element b = F (a)◦b′ ∈ FA(x, x)◦B(Fx, Fx), we have that
L̄γ(b) = L̄γ(F (a) ◦ b′) = F (Lγ(a)) ◦ b′ → 0, and by criterion 1, elements of this
form are norm-dense in B(Fx, Fx). Furthermore we have already established
that ∥L̄γ∥ ≤ ∥Lγ∥ for each γ, so as (Tλ) is uniformly bounded, so is the net

L̄γ . Hence we can apply Lemma 1.4.2 and see that L̄γ(b)
γ−→ 0.

The case of the right multiplier follows similarly from criterion 2. Hence
we see that F̄ (Tγ) goes to 0 in the strict topology. By linearity this proves
the case for nets converging strictly to an arbitrary limit and we conclude F̄ is
strictly continuous on bounded subsets.

Finally, to show this extension is unique, note that by Lemma 1.3.8, any
multiplier in MA(x, y) can be strictly approximated by a bounded net of ele-
ments in A, so any other extension of F to MA which is strictly continuous
on bounded subsets must be equal to F̄ .

Remark 1.4.6. It follows from the final criterion that if A is unital, a non-
degenerate functor A → MB is simply a unital functor A → MB. To see
this, note that the strict topology on MA ∼= A is just the norm topology, any
C∗-functor is norm-continuous, and norm convergence in MB implies strict
convergence. So as all C∗-functors are norm-continuous the fourth criterion
simply describes a unital functor A → MB.

Remark 1.4.7. It is clear from the third criterion that if G : A → MB and
F : B → MC are two non-degenerate functors, we can compose their lifts
to get F̄ ◦ Ḡ : MA → MC. This composition is again strictly continuous
on bounded subsets as certainly F̄ sends bounded subsets to bounded subsets
(it is a C∗-functor so norm-decreasing), hence it restricts to a non-degenerate
functor, which equals F̄ ◦G by uniqueness of lifts.

Example 1.4.8. The embedding κA : A ↪−→ MA is non-degenerate: we can
see this by combining criterion 3 in Theorem 1.4.5 with Corollary 1.2.8.

Example 1.4.9. Any full and faithful C∗-functor F : A → B is non-degenerate;
it preserves approximate units of endomorphism algebras so criterion 3 is sat-
isfied. Hence for example, the embedding A ↪−→ A⊕ is non-degenerate.

This theory allows us to talk about equivalences between non-unital C∗-
categories:
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Definition 1.4.10. A non-degenerate C∗-functor F : A → MB is termed a
(unitary) multiplier equivalence if there is a C∗-functor G : B → MA such
that F̄ and Ḡ are inverse (unitary) equivalences between MA and MB. A
C∗-functor F : A → B is termed a (unitary) multiplier equivalence if its com-
position with the embedding κB : B ↪−→ MB is non-degenerate and a (unitary)
multiplier equivalence.

We end the section with a slight categorification of Theorem 1.4.5. First
we need to expand the terminology from Proposition 1.1.46 a little.

Definition 1.4.11. If A and B are C∗-categories, we denote by

Funndg(A,MB)

the full subcategory of Fun(A,MB) spanned by the non-degenerate functors
and by

Funstrict(MA,MB)

the subcategory of Fun(MA,MB) spanned by the unital functors which are
strictly continuous on bounded subsets.

We can then rephrase Theorem 1.4.5 as follows:

Proposition 1.4.12. If A and B are C∗-categories and κ = κA : A→MA is
the embedding from Proposition 1.3.5, then the precomposition functor

− ◦ κ : Funstrict(MA,MB)→Funndg(A,MB)

is an isomorphism of categories.

Proof. The functor − ◦ κ is surjective on objects by the extension criterion in
Theorem 1.4.5, and injective on objects by the uniqueness of the extension.

To show that it is full, we need to show for two non-degenerate functors
F, F ′ ∈ ObFunndg(A,MB) and a bounded transformation ϵ : F ⇒ F ′, that
ϵ = η ◦ κ : F ⇒ F ′ for some η : F ⇒ F ′, where F and F ′ are the unique lifts
of F and F ′ through κ and η ◦ κ is the whiskering of η through κ.

We can simply set ηx = ϵx for all x ∈ ObA, but we must show that ηx is
natural with respect to multiplier morphisms. Consider a naturality diagram

F (x) F (y)

F ′(x) F ′(y)

F (T )

ηx ηy

F ′(T )

which we know commutes when T = κ(a) for some a ∈ A(x, y). But then note
by Lemma 1.3.8 we can strictly approximate T by a bounded net of multipliers
κ(aλ), and then by Lemma 1.1.45

ηyF (κ(aλ))− F ′(κ(aλ))ηx
λ−→ ηyF (T )− F ′(T )ηx



40 CHAPTER 1. C∗-CATEGORIES

strictly in MB(F (x), F ′(y)). So as the left-hand side is zero for all λ, the
right-hand side is zero and the diagram commutes for arbitrary T .

The functor is obviously faithful since the whiskered natural transformation
ϵ has the same morphisms as η.

There is in fact a tensor product of C∗-categories that fits into a tensor-hom
adjunction with the functor Funndg(A,−): to stop this chapter from getting
too long we postpone discussion of this adjunction to Appendix A.

1.5 Multiplier direct sums

We end the chapter with a discussion of multiplier direct sums. This construc-
tion solves several problems at once: the first is that our definition of direct
sums from Section 1.2 involves identities on objects, which may not exist in a
general C∗-category. The second is that it allows us to sum an infinite number
of objects using the strict topology on the multiplier category. The definition
below is taken from [AV20], where it is called simply a ‘direct sum’.

In the definition below, recall that a multiset is simply a set in which ele-
ments are allowed to appear once.

Definition 1.5.1. Given a C∗-category A and a multiset {xi : i ∈ I} of objects
of A, we say

⊕
i∈I xi ∈ ObA is a multiplier direct sum of {xi : i ∈ I} with

structure maps ιi ∈ MA(xi,
⊕

i∈I xi) if:

• All maps ιi are isometries.

• The net of partial sums
∑
j∈J ιjι

∗
j for finite sub-multisets J ⊆ I converges

to id⊕
i∈I xi

in the strict topology, as defined in Definition 1.1.44.

Notice firstly that in the case that I is a finite multiset, the above data
(together with a choice of total order on the set) just defines a finite direct sum
in MA.

Remark 1.5.2. Recall that when A is unital, then MA ∼= A and the strict
topology is in fact the one given by the norm. But in any normed vector space
an uncountable sum can converge in the norm only if all but countably many
of its summands are zero: see for instance [HN01, p.136]. Therefore in this
case the second requirement can be true only if all but countably many of
the morphisms ιiι

∗
i are zero, meaning all but countably many of the objects

are zero. Furthermore, even countable infinite direct sums of Hilbert spaces
as classically conceived, for example ℓ2(N), are not multiplier direct sums in
Hilb. To see this, note simply that the net of partial sums in Definition 1.5.1 is
the standard net of n-rank projections in K(ℓ2(N), ℓ2(N)), which converges to
the identity of L(ℓ2(N), ℓ2(N)) in the strong∗ or pointwise topology, but not in
the norm. They are, however multiplier direct sums in the category KHilb of
Hilbert spaces with compact operators as morphisms: we will prove this later
(see Proposition 2.4.10).
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It is easy to see that a non-degenerate functor F : A → MB preserves
multiplier direct sums.

Proposition 1.5.3. If F : A → MB is a non-degenerate functor, it preserves
multiplier direct sums: to be precise, its underlying map ObA → ObB pre-
serves multiplier direct sums objectwise and its unique, unital, extension which
is strictly continuous on bounded subsets F̄ : MA → MB preserves their struc-
ture maps.

Proof. This follows immediately from Definition 1.5.1 and the fifth criterion in
Theorem 1.4.5.

Recall from Section 2 of this chapter the awkward fact that the additive
hull of a non-unital C∗-category does not possess all direct sums. The notion
of a multiplier direct sums allows us to amend this defect:

Lemma 1.5.4. The C∗-category A⊕ admits all finite multiplier direct sums.

Proof. The structure map (Li, Ri) = ιi ∈ M(A⊕)({xi}, {x1, . . . , xn}) is given
on one coordinate by the map Li : A⊕({xi}, {xi}) → A⊕({xi}, {x1, . . . , xn})
that sends a morphism f to the column with f in the i-th place and zeros
elsewhere. The right multiplier works similarly. It is elementary to verify that
these multipliers exhibit {x1, . . . , xn} as the multiplier direct sum of the xi.

In fact, we can now formulate a sort of universal property for A⊕:

Lemma 1.5.5. If B is a C∗-category closed under finite multiplier direct sums,
any non-degenerate C∗-functor

F : A → MB

extends uniquely to a non-degenerate functor

F⊕ : A⊕ → MB.

Proof. To define F⊕, consider the unique unital extension F̄ : MA → MB
which is strictly continuous on bounded subsets. As MB is closed under fi-
nite direct sums, this extends uniquely to a C∗-functor F̄⊕ : (MA)⊕ → MB
by Lemma 1.2.4. By Proposition 1.3.9 we can also write this as a functor
F̄⊕ : M(A⊕) → MB. It is easy to deduce that F̄⊕ is unital and strictly con-
tinuous on bounded subsets from the fact that F̄ is, hence it restricts to a
non-degenerate functor F⊕ : A⊕ → MB.





Chapter 2

Hilbert modules over
C∗-categories

Hilbert modules over general C∗-algebras, also called Hilbert C∗-modules, were
first defined in [Pas73]. They generalize Hilbert spaces and vector bundles over
topological spaces, and have long been recognized as the ‘correct’ notion of a
module over a C∗-algebra. They play a fundamental role in noncommutative
geometry, in particular KK-theory and quantum group theory.

In this chapter we develop the theory of Hilbert modules over C∗-categories,
first investigated in [Mit02a] and [Joa03]. After proving some basic results and
taking a detour on set-theoretic matters, we characterize the C∗-category of
Hilbert modules over a given C∗-category, proving in addition that it is equiv-
alent to the multiplier category of a subcategory called the compact operators.
We end with some results on Hilbert modules over the additive closure and
an approximate projectivity result that relates arbitrary Hilbert modules to
finitely generated free ones.

For the rest of this thesis we assume that A, B, C, etc. are locally small
C∗-categories, although much of the theory in this chapter can be developed
for large C∗-categories. Recall that we denote by VectC,0 the category of small
complex vector spaces.

2.1 Hilbert modules and their size

We begin with a ‘naive’ definition of a pre-Hilbert module over a C∗-category.
These naive modules are termed ‘large’ as they do not satisfy a size requirement
that we will later see is important.

Definition 2.1.1. If A is a (locally small) C∗-category, a large right pre-Hilbert
A-module is a complex linear functor

E : Aop → VectC,0

43
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equipped with sesquilinear ‘inner products’

⟨−,−⟩ : E(y)× E(x) → A(x, y)

for each pair x, y ∈ ObA. Furthermore the inner products must satisfy for all
e ∈ E(y), f ∈ E(x) and g ∈ A(w, x) the following:

• ⟨e, f⟩ = ⟨f, e⟩∗.

• ⟨e, f⟩ ◦ g = ⟨e, f · g⟩, where f · g := E(g)(f).

• ⟨e, e⟩ is a positive element of the C∗-algebra A(y, y).

We say E is a large right Hilbert A-module if in addition it satisfies

• ⟨e, e⟩ = 0 only if e = 0.

• For each x ∈ ObA, the space E(x) is complete in the norm

∥e∥ :=
√

∥⟨e, e⟩∥A(x,x).

Note that for any large pre-Hilbert module, a sort of conjugate linearity in
the first argument follows by combining the first and second axioms:

⟨f · g, e⟩ = ⟨e, f · g⟩∗ = (⟨e, f⟩ ◦ g)∗ = g∗ ◦ ⟨e, f⟩∗ = g∗ ◦ ⟨f, e⟩.

We will not be concerned for the moment with left Hilbert A-modules,
though if desired these can easily be defined as right Hilbert Aop-modules;
alternatively, one can modify the above axioms by making E a covariant functor
(so that elements of A act on the left), requiring that the product ⟨−,−⟩
be linear in the first variable and conjugate linear in the second, and that
⟨a · e, f⟩ = a ◦ ⟨e, f⟩.

Example 2.1.2. If A has only one object x, the large Hilbert modules over
A are exactly the right Hilbert modules over the C∗-algebra A(x, x) (see Defi-
nition 1.1.30). In particular, complex Hilbert spaces are Hilbert modules over
the one-object C∗-category with hom-space C.

Example 2.1.3. For any C∗-category A and any object x of A, there is a
‘representable’ large Hilbert module

hx :
A → VectC,0
y 7→ A(y, x)

with inner product defined for all morphisms a ∈ hx(y), b ∈ hx(z) by

⟨a, b⟩hx
:= a∗b ∈ A(z, y).

The action of a C∗-category on a Hilbert module is automatically continu-
ous:
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Lemma 2.1.4. If E is a large right pre-Hilbert A-module, then for all e ∈ E(x)
and a ∈ A(w, x) the inequality

∥e · a∥ ≤ ∥e∥∥a∥

holds. In particular, the action of A on E is continuous.

Proof. Note that we have

∥e · a∥2E(w) = ∥⟨e · a, e · a⟩∥A(w,w) = ∥a ◦ ⟨e, e⟩ ◦ a∗∥A(w,w)

≤ ∥a∥A(w,x)∥⟨e, e⟩∥A(x,x)∥a∗∥A(x,w) = ∥a∥2A(w,x)∥e∥
2
E(x),

where we have used subscripts to specify norms. Hence taking square roots we
obtain our result.

There is also a Cauchy-Schwartz lemma we can prove:

Proposition 2.1.5. If E is a large right pre-Hilbert A-module, then for any
pair e ∈ E(x) and f ∈ E(y), the following Cauchy-Schwartz inequality holds in
the C∗-algebra A(x, x):

⟨e, f⟩ ◦ ⟨f, e⟩ ≤ ∥⟨f, f⟩∥⟨e, e⟩.

Proof. We proceed as in the proof of [Lan95, Proposition 1.1]. Note that we can
assume without loss of generality that ∥⟨f, f⟩∥ = 1, as then for any f , applying
the lemma to f ′ = f√

∥⟨f,f⟩∥
will do the trick. Now, for any a ∈ A(x, y) note

that by positivity,

0 ≤ ⟨e− f · a, e− f · a⟩
= ⟨e, e⟩ − ⟨e, f⟩ ◦ a− a∗ ◦ ⟨f, e⟩+ a∗ ◦ ⟨f, f⟩ ◦ a
≤ ⟨e, e⟩ − ⟨e, f⟩ ◦ a− a∗ ◦ ⟨f, e⟩+ a∗ ◦ a.

Where in the last inequality we have applied Lemma 1.2.9. Then setting
a = ⟨f, e⟩, the final two terms cancel out and we get that

0 ≤ ⟨e, e⟩ − ⟨e, f⟩ ◦ ⟨f, e⟩ = ∥⟨f, f⟩∥⟨e, e⟩ − ⟨e, f⟩ ◦ ⟨f, e⟩

proving the required inequality.

Corollary 2.1.6. If E is a large right pre-Hilbert A-module, then for any pair
e ∈ E(x) and f ∈ E(y) the following Cauchy-Schwartz inequality holds in R:

∥⟨f, e⟩∥ ≤ ∥f∥∥e∥.

Proof. Applying norms to Proposition 2.1.5, we get

∥⟨f, e⟩∥2 = ∥⟨f, e⟩∗ ◦ ⟨f, e⟩∥ = ∥⟨e, f⟩ ◦ ⟨f, e⟩∥ ≤ ∥⟨f, f⟩∥∥⟨e, e⟩∥ = ∥f∥2∥e∥2.
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We apply these results to give a procedure for turning a pre-Hilbert module
into a Hilbert module:

Proposition 2.1.7. If E : Aop →VectC,0 is a large right pre-Hilbert A-module,
then there is a large right Hilbert A-module

Ē : Aop →VectC,0

obtained at every x ∈ ObA by quotienting out all e ∈ E(x) such that ⟨e, e⟩ = 0
and completing the resulting normed vector space.

Proof. Note first that Corollary 2.1.6 implies that for e, f ∈ E(x) we have
∥e+ f∥ ≤ ∥e∥+ ∥f∥, therefore ∥ · ∥ is a seminorm on each space E(x). Denote
by E0(x) the subspace of elements e such that ∥e∥ = 0. Then as

⟨e+ e′, f + f ′⟩ = ⟨e, f⟩+ ⟨e′, f⟩+ ⟨e, f ′⟩+ ⟨e′, f ′⟩,

we see by Corollary 2.1.6 that

⟨e+ E0(x), f + E0(x)⟩ := ⟨e, f⟩

is a well-defined inner product on E(x)/E0(x). Finally Lemma 2.1.4 tells us the
action of A descends to E(x)/E0(x), and if we let Ē(x) be the completion of
E(x)/E0(x) in the above norm, the action of A can be unambiguously extended
to Ē(x) by Lemma 2.1.4. We’re going to show that Ē : Aop → VectC,0 is a
large right Hilbert A-module.

We define an inner product on Ē(y)× Ē(x) by

⟨lim
n
en, lim

n
fn⟩ := lim

n
⟨en, fn⟩

for all Cauchy sequences en and fn in E(x)/E0(x) and E(y)/E0(y) respectively.
To see that this limit exists, note that

⟨en, fn⟩ − ⟨em, fm⟩ = ⟨en − em, fn⟩+ ⟨em, fn − fm⟩

and by assumption en, fn are bounded so ⟨en, fn⟩ is a Cauchy sequence in
A(y, x), hence has a limit. To see that this limit is independent of the chosen
sequence, suppose limn en = limn e

′
n and limn fn = limn f

′
n, we apply Corol-

lary 2.1.6 to both terms on the right-hand side of the previous equation and
hence see the product is well-defined. The product is positive definite since
it is positive definite on the dense subset E(x)/E0(x) and by Lemma 1.1.22
a limit of positive elements is again positive. Finally Ē(x) is complete in the
norm induced by this inner product, since it agrees with the original norm by
definition.

The involution axiom ⟨e, f⟩ = ⟨f, e⟩∗ holds on E since it holds on E/E0

and the involution is norm-preserving, and similarly the naturality ⟨f, e · g⟩ =
⟨f, e⟩ ◦ g follows from the continuity of the action. This completes the proof
that Ē is a right Hilbert module over A.
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We follow by establishing a few basic density results that will come in handy
later:

Lemma 2.1.8. If E is a large right Hilbert A-module, then for each object x
of A, the subspace

E(x) · ⟨E(x), E(x)⟩ ⊆ E(x)

given by the span of elements of the form e1 · ⟨e2, e3⟩ is dense in E(x).

Proof. Note it follows from the Hilbert module axioms that E(x) is a Hilbert
module over the C∗-algebra A(x, x), so this follows from the analogous lemma
for C∗-algebras, see e.g. [Lan95, p.5].

Corollary 2.1.9. If (uλ) is an approximate unit for A(x, x) and e ∈ E(x), we

have e · uλ
λ−→ e.

Proof. Note that a fortiori from the above lemma we see that the E(x)·A(x, x)

is always dense in E(x). But clearly (e · a) · uλ = e · (auλ)
λ−→ e · a, and we

deduce the corollary using Lemma 1.4.2.

We can now show that every element of a Hilbert module is in the image
of the action of some A-morphism. This is done by combining Corollary 2.1.9
with the following classical result:

Theorem 2.1.10 (Cohen-Hewitt Theorem, see [CLM79, p. 108]). Suppose
A is a Banach algebra with approximate unit (uλ), and M is a right Banach
A-module (that is, an A-module with a complete norm making the action of

A continuous). Suppose m ∈ M is such that m · uλ
λ−→ m. Then there exist

n ∈M and a ∈ A such that m = n · a.

Corollary 2.1.11. If A is a C∗-category and E is a large right Hilbert A-
module, then for any x ∈ ObA, e ∈ E(x) there exists f ∈ E(x), a ∈ A(x, x)
such that e = f · a.

We end with a discussion of the size of Hilbert modules. Studying Defini-
tion 2.1.1, one quickly notices that unless A has a set of objects, we cannot
expect the union of all component spaces E(x) to form a set. This will not be
a problem for our theory as long as we ask that there is some set of elements
generating E across all objects of A, as in the theory of small presheaves for
locally small categories (see e.g. [nLa23c]). The author first became aware of
this notion in the context of Hilbert modules through Benjamin Dünzinger’s
master’s thesis, and later discovered it had also appeared in Simon Henry’s
paper [Hen15].

Below, we use set to mean a set in Set0 (for example the hom-sets of A)
and collection to mean a set in Set1 (which contains ObA and the collection
of all A-morphisms). We begin with some results on large Hilbert modules.
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Definition 2.1.12. For a large right Hilbert A-module E : Aop → VectC,0 and
a collection S of elements s ∈ E(xs) (where each xs ∈ ObA) we denote by

⟨S⟩ : Aop → VectC,0

the smallest subfunctor of E containing S which is closed under scalar multi-
plication, addition, and action from morphisms in A, and such that its value
on each object is closed in the norm inherited from E. Put more succinctly, ⟨S⟩
is the smallest sub-Hilbert module of E containing S. We say that S generates
E when ⟨S⟩ = E.

Lemma 2.1.13. For E and S as above, the module ⟨S⟩ exists and is given
at x ∈ ObA by the norm closure of the space of finite linear combinations
Σni=1µisi+Σmj=1sj ·aj, where for all i and j we have si ∈ S∩E(x), µi ∈ C, sj ∈ S,
and aj ∈ A(x, xsj ).

Proof. Call the second module in the above statement [S]. Note firstly that
any finite linear combination of the type defined should be in ⟨S⟩, which is
also norm-closed, giving us that [S] ⊆ ⟨S⟩. Conversely, clearly [S] is a Hilbert
submodule of E containing S, giving that ⟨S⟩ ⊆ [S], and hence we see that
[S] = ⟨S⟩.

Definition 2.1.14. A large right A-Hilbert module E : Aop → VectC,0 is
termed a Hilbert module if there is a set S of elements s ∈ E(xs) (where each
xs ∈ ObA) such that S generates E.

This definition was first given in [Hen15, Definition 2.2.21]. We easily show
that the examples of large Hilbert modules we have looked at so far are in fact
Hilbert modules:

Lemma 2.1.15. If A is a small C∗-category then every large right Hilbert
A-module E is in fact a Hilbert module.

Proof. As A has a set of objects we can simply let S be the set
⋃
x∈ObAE(x)

of all elements of E.

Lemma 2.1.16. If A is locally small then for each x ∈ ObA we have that hx
is a Hilbert module.

Proof. Take an approximate unit (uλ)λ∈Λ for A(x, x) where Λ is a set, and
note that Corollary 1.2.8 implies that each element a ∈ hx(y) = A(y, x) is the
norm limit of uλ ◦ a = uλ · a. Hence S = {uλ : λ ∈ Λ} ⊆ hx(x) generates
hx.

Remark 2.1.17. We will occasionally use the word ‘small’ to emphasize the
property of being generated by a set: this coincides with the terminology in
[Hen15]. As we will not deal with many ‘strictly large’ Hilbert modules, how-
ever, we define Hilbert modules as being necessarily small, for economy of
language.
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2.2 Bounded adjointable operators

In this section, we aim to define the C∗-category of right Hilbert A-modules.
To do this we must define morphisms, an involution, and a norm.

Definition 2.2.1. If E,F : Aop → VectC,0 are two right Hilbert A-modules,
then an operator

T : E → F

is simply a natural transformation T : E ⇒ F of the underlying functors. We
say T is bounded if the set

{∥T (e)∥ : x ∈ ObA, e ∈ E(x), ∥e∥ = 1} ⊆ R

is bounded, in which case we denote its supremum by ∥T∥.

We also ask that our operators are adjointable:

Definition 2.2.2. A bounded operator T ∗ : F → E of right HilbertA-modules
is an adjoint for the bounded operator T : E → F when we have

⟨Te, f⟩F = ⟨e, T ∗f⟩E ∈ A(x, y) for all x, y ∈ ObA, e ∈ E(x), f ∈ F (y).

We will denote the space of bounded adjointable operators from E to F by
L(E,F ), and shorten L(E,E) to L(E).

Lemma 2.2.3. The adjoint T ∗, if it exists, is unique.

Proof. If T ∗
1 and T ∗

2 are two adjoints for T then we immediately derive from
the adjoint equation that ⟨e, T ∗

1 f − T ∗
2 f⟩E = ⟨Te, f⟩F − ⟨Te, f⟩F = 0 for all

x, y ∈ ObA, e ∈ E(x), f ∈ F (y). But then setting x = y and e = T ∗
1 f − T ∗

2 f
we see that in fact T ∗

1 f − T ∗
2 f = 0 for all f .

Remark 2.2.4. We will often drop ‘bounded’ and ‘adjointable’ and speak
simply of operators, except where we have to prove that an operator is bounded
and has an adjoint.

Lemma 2.2.5. If A is a C∗-category and E1, . . . , En is a finite list of right
Hilbert A-modules, there is a Hilbert module ⊕ni=1Ei, labelled their direct sum,
given by

• (⊕ni=1Ei)(x) := ⊕ni=1Ei(x) and

• ⟨(e1, . . . , en), (f1, . . . , fn)⟩⊕n
i=1Ei

:= ⟨e1, f1⟩E1
+ · · ·+ ⟨en, fn⟩En

.

Proof. The axioms for a large pre-Hilbert module are obvious. Positive defini-
tivity is satisfied since by Lemma 1.1.18 and Lemma 1.1.21 the sum of several
positive elements can only be zero if all are zero, and completeness follows as

max
i

∥⟨ei, ei⟩∥ ≤ ∥⟨e1, e1⟩+ · · ·+ ⟨en, en⟩∥ ≤ nmax
i

∥⟨ei, ei⟩∥,
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where the first inequality follows from Lemma 1.1.18 and Lemma 1.1.21. Hence
we see a sequence in (⊕ni=1Ei)(x) is Cauchy if and only if each of its coordinates
are, in which case the sequence converges to its coordinate-wise limit.

Finally for the ‘smallness’ requirement, note that when Si is a generating set
for Ei, then ⊕ni=1Ei is generated by the set ⊔ni=1ιi(Si), where ιi : Ei ⇒ ⊕ni=1Ei
is the obvious injective transformation.

Note that since we do not yet have a C∗-category of Hilbert modules, the
above construction does not yet have an interpretation as a direct sum in a
C∗-category. We move on to show that there is in fact a C∗-category of right
Hilbert A-modules. The first version of the result below appeared as [Mit02a,
Proposition 9.4], and parts of the proof are taken from there.

Proposition 2.2.6. If A is a locally small C∗-category, there is a locally small,
unital C∗-category

Hilb-A

such that

• Its objects are right Hilbert A-modules.

• Its morphisms are bounded, adjointable operators.

• Its norm is the one given in Definition 2.2.1.

• The involution is given by taking adjoint operators.

Proof. We first show that each metric space L(E,F ) is complete. Suppose
(Tn) is a sequence of operators from E to F which is Cauchy in the norm
specified in Definition 2.2.1. Then it follows by definition of this norm that
the components (T xn ) : E(x) → F (x) each give sequences of maps of Banach
spaces which are Cauchy in the individual operator norms. Hence each of
these components converge to a limit T x, the collection of which assembles to
a natural transformation T : E ⇒ F which is a limit of (Tn) in the operator
norm. Linearity and boundedness follow clearly from the convergence, and we
also see that T has an adjoint T ∗ which is the limit of the adjoints T ∗

n .
All operators in this category are adjointable by definition so it has an

involution, which is well-defined by Lemma 2.2.3 and conjugate linear by the
sesquilinearity of ⟨−,−⟩E . It is also clear that the identity operator on every
Hilbert A-module is bounded and self-adjoint.

To show that the involution is functorial, we note that for two adjointable
operators T : D → E,S : E → F , we have

⟨S(T (d)), f⟩F = ⟨T (d), S∗(f)⟩E = ⟨d, T ∗S∗(f)⟩D

so by uniqueness T ∗ ◦ S∗ = (S ◦ T )∗, and similarly T ∗∗ = T .
To show contractivity of composition we note that if ∥e∥ = 1, then

∥⟨ST (e), ST (e)⟩∥ ≤ ∥S∥∥⟨T (e), T (e)⟩∥ ≤ ∥S∥∥T∥.
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Note furthermore that if ∥e∥ = 1, then

∥T (e)∥2 = ∥⟨T (e), T (e)⟩∥
= ∥⟨T ∗T (e), e⟩∥
≤ ∥T ∗T (e)∥∥e∥
≤ ∥T ∗T∥∥e∥2
= ∥T ∗T∥

so by definition of ∥T∥ we see ∥T ∗T∥ ≥ ∥T∥2. By Lemma 1.1.24, this will be
enough to prove the C∗-identity in the presence of the other properties.

Note that restricting our attention to operators T : E → E, the above shows
L(E) is a C∗-algebra for each right Hilbert A-module E, so for an arbitrary
T : E → F , we can form the direct sum E ⊕ F as in Lemma 2.2.5 and the
C∗-algebra L(E ⊕ F ). Note that the C∗-algebra L(E) embeds into L(E ⊕ F )

as the top left corner in a matrix algebra. Now consider MT =

[
0 0
T 0

]
: we

have that M∗
TMT =

[
T ∗T 0
0 0

]
∈ L(E ⊕F ) is necessarily a positive element of

the C∗-algebra L(E⊕F ), so by Lemma 1.1.17 we see T ∗T is a positive element
of L(E). This concludes the proof that Hilb-A is a C∗-category.

We finish by proving local smallness. Suppose E and F are right Hilbert A-
modules. If S is a generating set for E, it is clear from Lemma 2.1.13 that any
bounded adjointable map T ∈ L(E,F ) is determined by its image on S. But
each element s ∈ E(xs) can only be sent to an element in the set F (xs), and
hence we see there is an injective map from L(E,F ) to the set Πs∈SF (xs).

Lemma 2.2.7. Hilb-A is closed under finite direct sums and idempotent com-
plete.

Proof. Firstly, is obvious that the construction in Lemma 2.2.5 gives direct
sums, where the structure maps ιi : Ei → ⊕ni=1Ei are given by inserting an
element into the ith coordinate, with adjoint given by projecting.

As for idempotent completeness, take a projection P ∈ L(E,E), that is, a
bounded adjointable map such that P ∗ = P and P 2 = P . Then it is easily
verified that kerP and imP , taken objectwise, are Hilbert submodules of E and
that E ∼= kerP ⊕ imP .

Definition 2.2.8. A right Hilbert A-module E is said to be finitely generated
free if there is a list of A-objects x1, . . . , xn such that ⊕ni=1hxi

∼= E, where
the hxi

are the representable A-modules from Example 2.1.3. We say E is
finitely generated projective if it is a direct summand of a finitely generated
free module.

We close with a characterization of the unitary isomorphisms in Hilb-A.

Proposition 2.2.9. If E and F are right Hilbert A-modules, and T : E ⇒ F
is any operator (not necessarily bounded or adjointable) from E to F , then T
is a bounded adjointable unitary isomorphism of right Hilbert A-modules if and
only if T is surjective at every x ∈ ObA and T preserves all inner products.
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Proof. Note that if T preserves inner products it must be an isometry on each
single object, so as T is also surjective on each object it must have an object-
wise inverse T−1, which is in addition natural since an array of isomorphisms
is natural if and only if its inverse is. But then for each e ∈ E(x), f ∈ F (y) we
have

⟨e, T−1(f)⟩E = ⟨T (e), TT−1(y)⟩F = ⟨T (e), f⟩F
showing that T−1 = T ∗. Hence T is a unitary isomorphism of A-modules. The
converse is obvious.

2.3 Compact operators on Hilbert modules

Hilbert spaces have a notion of compact operators between them; these are given
by the norm-closure of the subspace of all operators with finite-dimensional
range. In this section we define compact operators between two Hilbert mod-
ules over a C∗-category and characterize the compact-relative topology on the
category of bounded operators.

Definition 2.3.1. If E,F are right Hilbert A-modules and x ∈ ObA, then for
module elements e ∈ E(x) and f ∈ F (x), the single-rank operator

θf,ex : E → F

is defined by setting for all y ∈ ObA, e′ ∈ E(y) :

θf,ex (e′) := f · ⟨e, e′⟩E ∈ F (y).

It immediately follows that θ−,− is linear in the first variable, conjugate
linear in the second variable, and that for all elements e ∈ E(x), f ∈ F (y) and
morphisms a ∈ A(x, y) we have

θf,e·a
∗

y = θf ·a,ex .

We will omit the indexing object x where it is implied or not relevant.

Lemma 2.3.2. The single-rank operator θf,ex is bounded and has adjoint

θe,fx : F → E

Proof. For the bound note that if e′ ∈ E(y) with ∥e′∥ = 1, then

∥θf,ex (e′)∥ = ∥f · ⟨e, e′⟩E∥ ≤ ∥f∥∥⟨e, e′⟩∥ ≤ ∥e∥∥f∥

where we use Lemma 2.1.4 and Corollary 2.1.6 for the two inequalities. For
the adjoint, let f ′ ∈ F (z) for some z ∈ ObA. Then note

⟨θf,ex (e′), f ′⟩ = ⟨f · ⟨e, e′⟩, f ′⟩
= ⟨e, e′⟩∗ ◦ ⟨f, f ′⟩
= ⟨e′, e⟩ ◦ ⟨f, f ′⟩
= ⟨e′, e · ⟨f, f ′⟩⟩
= ⟨e′, θe,fx (f ′)⟩

hence θe,fx = (θf,ex )∗.
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Definition 2.3.3. A finite-rank operator is a finite sum of single-rank opera-
tors. A compact operator is a norm-limit of finite-rank operators.

Example 2.3.4. If A has one object x, our notion of compact operators co-
incides with the usual notion of compact operators between Hilbert modules
over A(x, x) (see [Lan95, p.10]). Specifically, when A(x, x) = C, then compact
operators of Hilbert A-modules are compact maps between Hilbert spaces.

Note that our definition of compact operators is (at least on the face of
it) distinct from that in [Mit02b, Definition 3.2], though it agrees with the
definition in [Fer23, Definition 2.3.6].

Lemma 2.3.5. The single-rank operators are closed under pre- and postcom-
position with bounded operators. In particular if θe,fx : E → F is a single-rank
operator and S : D → E and T : F → G are bounded operators of right Hilbert
A-modules, we have

T ◦ θf,ex = θT (f),e
x and θf,ex ◦ S = θf,S

∗(e)
x .

Proof. Let y ∈ ObA. Note that for all e′ ∈ E(y) we have

(T ◦ θf,ex )(e′) = T (f · ⟨e, e′⟩) = T (f) · ⟨e, e′⟩ = θT (f),e
x (e′)

and for all d ∈ D(y) we have

(θf,ex ◦ S)(d) = f · ⟨e, S(d)⟩ = f · ⟨S∗(e), d⟩ = θf,S
∗(e)

x (d).

Proposition 2.3.6. The compact operators form an essential ideal in the C∗-
category Hilb-A.

Proof. By Lemma 2.3.5 it is easy to see that finite sums of single-rank op-
erators are closed under pre- and postcomposition by operators, and then by
Lemma 1.1.7 we see that the norm-closure of finite sums of such elements forms
a C∗-ideal.

Next we show this ideal is essential: suppose T is a bounded operator
E → F such that T ◦ θe,dx = 0 for all modules D ∈ Hilb-A, objects x ∈
Ob(A), and module elements d ∈ D(x), e ∈ E(x). Let D = E, then we have
T ◦θe,e′x (e′′) = T (e) · ⟨e′, e′′⟩ = T (e · ⟨e′, e′′⟩) = 0 for all elements e, e′, e′′ ∈ E(x).
But by Lemma 2.1.8 the span of such elements is dense in E(x) so we see T = 0
on all of E(x).

Definition 2.3.7. We denote the category of Hilbert modules and compact
operators by

KHilb-A .

When A is implicit we write K(E,F ) rather than KHilb-A(E,F ) for the com-
pact operators from E to F , and we further shorten K(E,E) to K(E).
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Lemma 2.3.8. If Uλ is an approximate unit for the C∗-algebra K(E), then

for any x ∈ ObA and e ∈ E(x), we have Uλ(e)
λ−→ e.

Proof. Notice for any e1, e2, e3 ∈ E(x), that

∥Uλ(e1 · ⟨e2, e3⟩)− e1 · ⟨e2, e3⟩∥ = ∥(Uλ ◦ θe1,e2 − θe1,e2)(e3)∥
≤ ∥Uλ ◦ θe1,e2 − θe1,e2∥∥e3∥

λ−→ 0

In other words, Uλ(e1 · ⟨e2, e3⟩)
λ−→ e1 · ⟨e2, e3⟩. So since Lemma 2.1.8 tells us

the elements of this form generate a dense subspace of E(x) and ∥Uλ∥ ≤ 1, we

see by Corollary 1.4.3 that Uλ(e)
λ−→ e for all e ∈ E(x).

We can use compact operators to define a sort of Yoneda embedding for
C∗-categories:

Lemma 2.3.9. The assignment x 7→ hx defined in Example 2.1.3 extends to
a faithful C∗-functor ι : A → Hilb-A, where for any a ∈ A(x, y) we let

ι(a) : hx → hy

be the operator with components ι(a)z : A(z, x) → A(z, y) given by postcompo-
sition with a. Furthermore, this functor has image ι(A(x, y)) = K(hx, hy).

Proof. This functor is clearly linear, faithful and intertwines the involutions
on the two categories, so it is an isometric C∗-functor. To show the inclusion
ι(A(x, y)) ⊇ K(hx, hy), note that for a ∈ hx(z), b ∈ hy(z), the rank one opera-
tor θb,a : hx → hy is the one given by postcomposition with ba∗. To show that
ι(A(x, y)) ⊆ K(hx, hy), factorize any morphism a ∈ A(x, y) as in Lemma 1.2.7.

Then we see that there exists d ∈ A(x, y) such that ι(a) = θ(a
∗a)1/4,d∗ , so in

fact each operator in the image of ι is single-rank.

We will occasionally denote ι by ιA when we need to specify A.

Corollary 2.3.10. If A is unital, the functor ιA is also full, and furthermore
ιA extends to an equivalence

A♮
⊕
∼= fgProj-A

where fgProj-A is the category of finitely generated projective right Hilbert A-
modules and bounded operators.

Proof. If A(x, x) is unital a standard Yoneda argument shows that any trans-
formation T : hx → hy is given by postcomposing with the morphism Tx(idx):
for any z ∈ ObA, a ∈ hx(z) we have

Tz(a) = Tz(idx ◦a) = Tx(idx) ◦ a.

So T is in fact in the image of ιA. Hence if A is unital, ιA is full.
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Note for the second equivalence firstly that ιA is an equivalence between A
and the category of representable right Hilbert A-modules. Secondly, as Hilb-A
is idempotent complete, fgProj-A is by definition the closure of representable
right Hilbert A-modules under finite direct sums and direct summands. The
stated equivalence follows.

We can in fact generalize Lemma 2.3.9 to give a Yoneda lemma for C∗-
categories.

Proposition 2.3.11. For each x ∈ ObA and right Hilbert A-module F , there
is an isometric isomorphism

η : K(hx, F ) → F (x).

Proof. We construct the map η : K(hx, F ) → F (x) by defining it first on single-
rank operators. For f ∈ F (y) and a ∈ A(y, x), note that for each b ∈ A(z, x)
we have

θf,a(b) = f · ⟨a, b⟩ = f · a∗b = (f · a∗) · b.
Hence we can set η(θf,a) := f · a∗ ∈ F (x) and extend linearly to finite-

rank operators. To show this partial map is well-defined, note that picking
x = y and letting b vary over an approximate unit (uλ) for A(x, x), we see by
Corollary 2.1.9 that

n∑
i=1

θfi,ai(uλ) = (

n∑
i=1

fi · a∗i ) · uλ
λ−→

n∑
i=1

fi · a∗i .

So if
∑n
i=1 θ

fi,ai =
∑m
j=1 θ

f ′
j ,a

′
j , then

∑n
i=1 fi · a∗i =

∑m
j=1 f

′
i · a′∗i . Further-

more, applying norms to the above limit, and noting that ∥uλ∥ ≤ 1 for each
λ, we see that ∥

∑n
i=1 θ

fi,ai∥ ≥ ∥
∑n
i=1 fi · a∗i ∥. But conversely it follows from

Lemma 2.1.4 that

∥
n∑
i=1

θfi,ai(b)∥ = ∥(
n∑
i=1

fi · a∗i ) · b∥ ≤ ∥(
n∑
i=1

fi · a∗i )∥∥b∥

so we see ∥η(
∑n
i=1 θ

fi,ai)∥ = ∥
∑n
i=1 fi · a∗i ∥ = ∥

∑n
i=1 θ

fi,ai∥. But then by
Lemma 1.4.4 there is a unique isometric extension of η to all of K(hx, F ).

To show η is surjective, recall that by Corollary 2.1.11 for any f ∈ F (x)
there exist a ∈ A(x, x) and f ′ ∈ F (x) such that f = f ′ ·a: hence f = η(θf

′,a∗).

The map η is natural in F and x, but rather than proving this directly, we
find the inverse to the map and show that it is natural:

Lemma 2.3.12. For each x ∈ ObA and right Hilbert A-module F , the inverse
ϵ : F (x) → K(hx, F ) to the map η defined above is given by setting ϵ : f 7→ ϵf
where ϵf (a) = f · a for all a ∈ hx(y). The adjoint of ϵf is given for each
y ∈ ObA and f ′ ∈ F (y) by ϵ∗f (f

′) = ⟨f, f ′⟩.
This map is natural in both F and x: that is, for any ϕ ∈ L(F, F ′), we have

ϕ ◦ ϵf = ϵϕ(f), and for any b ∈ A(x′, x), we have ϵm ◦ ι(b) = ϵm·b
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Proof. Each map ϵf is evidently anA-module map and is bounded by Lemma 2.1.4;
furthermore, it is simple to verify that its adjoint is as stated.

Note next that for any b ∈ hx(z), θ
f,a ∈ K(hx, F ) we have

(ϵ ◦ η)(θf,a)(b) = (f · a∗) · b = f · (a∗b) = f · ⟨a, b⟩hx
= θf,a(b).

Hence by the density of the finite-rank operators we see ϵ is the unique inverse
for the map η.

We finish by showing the naturality: note for any a ∈ hx(y) that

ϵϕ(f)(a) = ϕ(f) · a∗ = ϕ(f · a∗) = ϕ(ϵf (a)).

For the second part, simply note for any b ∈ A(x′, x), a ∈ hx′(y) we have

(ϵf ◦ ι(b))(a) = (ϵf )(ba) = f · (ba) = (f · b)(a) = ϵf ·b(a).

This correspondence helps us understand single-rank operators better:

Lemma 2.3.13. If E and F are right Hilbert A-modules and x ∈ ObA, the
single-rank operators θf,ex are exactly those operators that factor through hx as
the composite

E → hx → F

of two compact operators.

Proof. Note simply that for any e′ ∈ E(y), we have

θf,ex (e′) = f · ⟨e, e′⟩ = ϵf ◦ ϵ∗e(e′).

Conversely, by Proposition 2.3.11 all compact sequences E → hx → F are
described by an operator ϵf ϵ

∗
e = θf,ex which is single-rank by definition.

It follows that KHilb-A is, in the sense defined in Proposition 1.1.38, the
ideal generated by the image of ιA.

Proposition 2.3.14. We have an equality

KHilb-A = Hilb-A im(ιA)Hilb-A

of subcategories of Hilb-A.

Proof. Recall from Proposition 1.1.38 that Hilb-A im(ιA)Hilb-A is the norm-
closure of the span of all morphisms that factor through some morphism in
im(ιA). Note that every such morphism must be compact, as compact mor-
phisms are an ideal and by Lemma 2.3.9 all morphisms in the image of ι are
compact. Hence we get an inclusion KHilb-A ⊇ Hilb-A im(ιA)Hilb-A.
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For the opposite inclusion, consider the single-rank map θf,ex : E → F for
e ∈ E(x), f ∈ F (x), and write f = f ′ · a for f ′ ∈ F (x), a ∈ A(x, x) using
Corollary 2.1.11. Then

θf,e = ϵf ◦ ϵ∗e = ϵf ′ ◦ ι(a) ◦ ϵ∗e.

Hence any single-rank operator can be factorized through a morphism in the
image of ι, and hence we see any compact operator is a norm-limit of sums of
such operators.

We close by describing a topology of ‘pointwise convergence’ on Hilb-A that
will come to play a significant role.

Definition 2.3.15. The strong∗ topology on Hilb-A is the topology such that
a net of operators Tλ : E → F converges to T in the strong∗ topology when
for every object x ∈ ObA and elements e ∈ E(x), f ∈ F (x), we have

∥Tλ(e)− T (e)∥ λ−→ 0 and ∥T ∗
λ (f)− T ∗(f)∥ λ−→ 0.

This is a legitimate definition for a topology since it is the one generated by
the seminorms T 7→ ∥T (e)∥, T 7→ ∥T ∗(f)∥ for all e and f . We will use the
adverb “strongly∗” to mean “in the strong∗ topology”.

We now generalize a result from the theory of Hilbert modules over C∗-
algebras.

Proposition 2.3.16 (c.f. [Lan95, Proposition 8.1]). The strong∗ topology co-
incides with the KHilb-A-relative topology on norm-bounded subsets.

Proof. Suppose that (Tλ) is a norm-bounded net of operators in L(E,F ): say
their norm is bounded by H ∈ R. We have to show that Tλ → 0 in the strong∗

topology if and only if Tλ → 0 in the KHilb-A-relative topology.

Assume first that Tλ → 0 strongly∗; that is, for each x ∈ ObA, we have
Tλ(e) → 0 for each e ∈ E(x) and T ∗

λ (f) → 0 for each f ∈ F (x). We have
to show that ∥Tλ ◦ h∥ → 0 for each h ∈ K(D,E) and ∥g ◦ Tλ∥ → 0 for each
g ∈ K(F,G).

Note first that for θf,ew ∈ K(D,E) we have

∥Tλ ◦ θf,ew ∥ = ∥θTλ(f),e
w ∥ ≤ ∥Tλ(f)∥∥e∥

hence ∥Tλ ◦ θf,ew ∥ λ−→ 0. Hence as the span of single-rank operators is dense
in K(D,E), and precomposition with the operators Tλ gives a bounded net
of operators K(D,E) → K(D,F ), we can apply Lemma 1.4.2 to deduce that
Tλ ◦ h→ for all h ∈ K(D,E).

Similarly, T ∗
λ (f) → 0 for each f ∈ F (x) implies that ∥g ◦ Tλ∥ → 0 for each

g ∈ K(F,G).
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For the converse, suppose Tλ → 0 relative to KHilb-A. Then in particular
∥Tλ ◦ h∥ → 0 for each h ∈ K(E,E) and ∥g ◦ Tλ∥ → 0 for each g ∈ K(F, F ).
Hence we see for any for any e, e′, e′′ ∈ E(x) that

Tλ(e · ⟨e′, e′′⟩) = Tλ(θ
e,e′

x (e′′)) = 0.

But by Lemma 2.1.8 the span of such elements is dense in E(x) so using

Lemma 1.4.2 we see Tλ(e)
λ−→ 0 for all e ∈ E(x).

Similarly, the fact that ∥g ◦ Tλ∥ → 0 for each g ∈ K(F,G) gives us that
T ∗
λ (f) → 0 for all f ∈ F (x), x ∈ ObA. This concludes our proof.

To see that these topologies do not necessarily coincide on unbounded sub-
sets of operators, see [Lan95, p.76] for an example of an unbounded net of
operators on a Hilbert space (i.e. a Hilbert module over A = C), which goes
to zero in the strong∗ topology but not in the topology relative to the compact
operators.

2.4 Bimodules and the equivalence M(KHilb-A) ∼= Hilb-A

A standard result on Hilbert modules is that if A is a C∗-algebra and E is
a right Hilbert A-module, then M(K(E)) = L(E) (see e.g. [Lan95, Theorem
2.4]). In this section we categorify this result in two ways: the first is that
we replace A by a C∗-category A. The second is that we replace the algebras
K(E) and L(E) by the C∗-categories KHilb-A and Hilb-A.

Definition 2.4.1. If A and B are C∗- categories, a right Hilbert A-B bimodule
is a C∗-functor

F : A → Hilb-B .

The bimodule F is said to be non-degenerate if the linear span of⋃
y∈ObA

FA(y, x)(F (y))

is dense in F (x) for all x ∈ ObA; that is, dense in F (x)(z) for each z ∈ ObB.

Remark 2.4.2. The astute reader may be concerned that we have already
defined what it means for a functor to be non-degenerate in Definition 1.4.1,
but by the end of this section we will see that the definitions coincide in a
precise sense.

Lemma 2.4.3. The inclusion KHilb-A ↪−→ Hilb-A is non-degenerate.

Proof. Recall from Lemma 2.1.8 that for any right Hilbert A-module E and
every x ∈ ObA, we have that E(x) · ⟨E(x), E(x)⟩ is dense in E(x). Note that
this is a subspace of KHilb-A(E,E)(E(x)), which a fortiori must then also be
dense, satisfying Definition 2.4.1.
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We provide an alternate characterization of non-degeneracy, analogous to
criteria 3 and 4 in Definition 1.4.1.

Lemma 2.4.4. F is non-degenerate if and only if for any x ∈ ObA and any
approximate unit (uλ) for A(x, x), any z ∈ ObB, and any e ∈ F (x)(z), we

have F (uλ)(e)
λ−→ e.

Proof. For the rightward implication, note that by the continuity of F , for all
F (a)(d) ∈ FA(y, x)(F (y)(z)) we have that

F (uλ)(F (a)(d)) = F (uλa)(d)
λ−→ F (a)(d).

So since by non-degeneracy the span of such elements gives a norm-dense sub-

set of F (x)(z), we can apply Lemma 1.4.2 to see that F (uλ)(d)
λ−→ d for all

morphisms d ∈ F (x)(z).

For the converse, note that if F (uλ)(e)
λ−→ e for e ∈ F (x)(z), then the set

{F (uλ)(e) : λ ∈ Λ} ⊆ F (A(x, x))(F (x)(z))

has e as a limit point, so the density requirement is satisfied.

We now begin building up to the main theorem of this section.

Lemma 2.4.5. Suppose F : A → Hilb-B is a non-degenerate bimodule, and C
is any C∗-category containing A as a C∗-ideal. Then F extends uniquely to a
C∗-functor

F̄ : C → Hilb-B,
which is faithful whenever both F is faithful and A is essential in C.

Proof. Note that A and C have the same objects by the remark below Def-
inition 1.1.36, so on objects we can simply set F̄ = F . Take any mor-
phism c ∈ C(x, x′). By nondegeneracy, at any object z ∈ ObB, the span
of ∪y∈ObAFA(y, x)F (y)(z) is dense in F (x)(z). On this dense subset we define
the transformation

F̄ (c) :

∑
y∈ObA FA(y, x)F (y)(z) → F (x′)(z)

Σni=1F (ai)ei 7→ Σni=1F (cai)ei.

Note the expression is well-defined since cai ∈ A. We firstly need to show
that this is a well-defined function on the given sum of subspaces, i.e. that if
Σni=1F (ai)ei = Σmi=1F (bi)fi, then Σni=1F (cai)ei = Σmi=1F (cbi)fi. So let uλ be

an approximate unit for A(x, x), then by Corollary 1.2.8 we have uλai
λ−→ ai,

so cuλai
λ−→ cai and by the continuity of F we have

Σni=1F (cai)ei = limλ

∑n
i=1 F (cuλai)ei = limλ F (cuλ)

∑n
i=1 F (ai)ei

= limλ F (cuλ)
∑m
i=1 F (bi)fi

= limλ

∑m
i=1 F (cuλbi)fi

= Σmi=1F (cbi)fi.
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Hence F (c) is well-defined, and applying norms to the third term above, we
deduce ∥F (c)∥ ≤ supλ ∥F (cuλ)∥ ≤ ∥c∥ as F is norm-decreasing and ∥uλ∥ ≤ 1
for all λ. So by Lemma 1.4.4 we can extend F (c) to a map

F (c) : F (x)(z) → F (x′)(z)

which is natural in z, bounded, and is easily seen to be have adjoint F̄ (c∗). It
is also elementary to check that F̄ is complex linear and preserves composition.
It follows that F̄ defines a C∗-functor C → Hilb-A.

For the final claim, if F is faithful and A is essential in C, we see that

ker(F̄ ) ∩ A = kerF = 0

so by Proposition 1.1.37, ker(F̄ ) = 0 and F̄ is faithful.

Lemma 2.4.6. Suppose F : A → Hilb-B is a faithful non-degenerate bimodule.
There is a C∗-subcategory D of Hilb-B, termed the idealizer under F of A, with
objects being those in the image of F and hom spaces

D(F (x), F (y)) :=

{
d ∈ L(F (x), F (y))) :

d ◦ FA(z, x) ⊆ FA(z, y) and
FA(y, z) ◦ d ⊆ FA(x, z)
for all z ∈ ObA

}
.

Furthermore, F extends uniquely to an equivalence F̄ : MA
∼=−→ D.

Proof. Notice D is a C∗-category which contains (the isometric image of) A
as an ideal. Now if C is any other C∗-category containing A as an ideal,
by Lemma 2.4.5 we get an embedding C ↪−→ Hilb-B whose image lands in
D by construction. So D has the defining universal property of MA from
Lemma 1.3.6.

We deduce our promised result.

Proposition 2.4.7. For any C∗-category A, there is an isomorphism of C∗-
categories

M(KHilb-A) ∼= Hilb-A .

Proof. By Lemma 2.4.3 the inclusion KHilb-A ↪−→ Hilb-A is nondegenerate, and
since KHilb-A is an ideal in Hilb-A, we see the idealizer of KHilb-A is all of
Hilb-A, so by Lemma 2.4.6, we get the desired equivalence, which is in fact an
isomorphism as M(KHilb-A) and Hilb-A have the same objects.

The above proposition was proven in [Fer23, Corollary 3.4.5] for small C∗-
categories. As an easy corollary we see that the multiplier category can be
considered as the full subcategory of Hilb-A on the representable modules:

Corollary 2.4.8. For any x, y ∈ ObA we have

L(hx, hy) ∼= MA(x, y).
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Proof. It is obvious from the single-object definition of multipliers that if A is
the inclusion of a full sub-C∗-category of a C∗-category B, then for all objects
x, y ∈ ObA we have MA(x, y) ∼= MB(x, y). Applying this to B = KHilb-A
and combining with Proposition 2.4.7, we get the stated result.

We hence get the promised disambiguation of non-degeneration.

Corollary 2.4.9. A functor F : A → Hilb-B is non-degenerate in the above
sense if and only if, considered as a functor A → M(KHilb-B), it is non-
degenerate in the sense of Definition 1.4.1.

Proof. The content of Lemma 2.4.4 is that F : A → Hilb−B is non-degenerate
if and only for every approximate unit uλ of every endomorphism algebra
A(x, x), the net F (uλ) approaches id ∈ L(Fx, Fx) in the strong∗ topology.
Note that since (uλ) is bounded, by Proposition 2.3.16 this is equivalent to
F (uλ) approaching id in the KHilb-B-relative topology, and in turn by Theo-
rem 1.4.5 this is equivalent to the requirement that F , considered as a functor
F : A → M(KHilb-B), is non-degenerate in the sense of Definition 1.4.1.

We close with two propositions on multiplier direct sums of Hilbert modules.

Proposition 2.4.10. The multiplier direct sum in KHilb-A of an arbitrary
multiset (Ei)i∈I of right Hilbert A-modules is given on each object x ∈ ObA
by

(
⊕
i∈I

Ei)(x) = {(ei) ∈
∏
i∈I

Ei(x) :
∑
i∈I

⟨ei, ei⟩ converges in A(x, x)},

with inner products defined by ⟨(ei), (fi)⟩ =
∑
i∈I⟨ei, fi⟩, and bounded ad-

jointable structure maps ιi ∈ L(Ei,
⊕

i∈I Ei) sending elements to sequences
with zeroes in all but one position.

Proof. Clearly ι∗i is the projection on the i-th coordinate, so each ι∗i ιi is an
isometry. Since for any element (ei) ∈ (

⊕
i∈I Ei)(x) the sum

∑
i∈I⟨ei, ei⟩

converges in the normed vector space A(x, x), we see by [HN01, p.136] that all
but countably many of the elements ⟨ei, ei⟩, and hence the entries ei, are zero.
Denote by J ⊆ I the countable ‘support’ of (ei), i.e. the coordinates where it
is non-zero.

Then by considering the subnet consisting of finite subsets of J , it is clear
that the net

{
∑
i∈F

ιiι
∗
i ((ei)) : F ⊆ I finite}

converges to (ei) in the norm. Hence {
∑
i∈F ιiι

∗
i : F ⊆ I finite} converges

strongly∗ to the identity, so as these maps and their sums clearly all have norm
1, by Proposition 2.3.16 the net converges to the identity in the strict (i.e. the
KHilb-A-relative) topology.

Finally, to prove the ‘smallness’ of this direct sum, we simply proceed as in
the finite case. Let Si be a generating set for each Ei, then as elements with
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finite support are dense in (
⊕

i∈I Ei)(x) = {(ei) ∈
∏
i∈I Ei(x)} one easily sees

that
⊕

i∈I Ei is generated by the set ⊔i∈Iιi(Si).

We derive from this a characterization of compact operators between mul-
tiplier direct sums:

Proposition 2.4.11. If (Ei)i∈I and (Fj)j∈J are collections of right Hilbert
A-modules with structure maps ιi : Ei →

⊕
i∈I Ei and ιj : Fj →

⊕
j∈J Fj,

then the isometries

λij : K(Ei, Fj) → K(
⊕
i∈I

Ei,
⊕
j∈J

Fj) : T 7→ ιjTι
∗
i

and their left inverses

µij : K(
⊕
i∈I

Ei,
⊕
j∈J

Fj) → K(Ei, Fj) : S 7→ ι∗jTιi

exhibit the Banach space K(
⊕

i∈I Ei,
⊕

j∈J Fj) as a direct sum of its subspaces
K(Ei, Fj). In other words, for every operator T ∈ K(

⊕
i∈I Ei,

⊕
j∈J Fj), the

net
∑
S⊆I×Jfinite λij(µij(T )) converges in the norm to T .

Proof. Consider firstly an operator θf,ex for some x ∈ ObA and some pair
(ei) ∈

⊕
iEi, (fi) ∈

⊕
j Fj , where both (ei) and (fj) have only a single non-

zero coordinate ek and fℓ. Then we have ι∗j ιjθ
e,f = θe,f when j = ℓ and

ι∗j ιjθ
e,f = 0 otherwise. Similarly θe,f ι∗i ιi = θe,f , when i = k, and θe,f ι∗i ιi = 0

otherwise. So the stated convergence result is clearly true for this θe,f . But
it is easy to see that the span of such operators θe,f includes all single-rank
operators whose two arguments have finitely many non-zero entries, and we can
also show these operators are norm-dense in all single-rank operators: write an
arbitrary (ei) ∈

⊕
iEi and (fj) ∈

⊕
j Fj as norm-limits of sequences (eni ), (f

n
j )

whose elements each have finitely many non-zero coordinates, as well as norm
less than or equal to that of (ei), respectively (fj). But now note that we have

∥θ(e
n
i ),(f

n
j ) − θ(ei),(fj)∥ ≤ ∥θ(eni ),(fj) − θ(ei),(fj)∥+ ∥θ(e

n
i ),(f

n
j ) − θ(e

n
i ),(fj)∥

≤ ∥θ(eni )−(ei),(fj)∥+ ∥θ(e
n
i ),(f

n
j )−(fj)∥

≤ ∥(eni )− (ei)∥∥(fj)∥+ ∥(eni )∥∥(fnj )− (fj)∥
≤ ∥(eni )− (ei)∥∥(fj)∥+ ∥(ei)∥∥(fnj )− (fj)∥

n−→ 0

and hence θ(e
n
i ),(f

n
j ) → θ(ei),(fj) in the operator norm. Hence the single-rank

operators with both module elements having finitely many non-zero coordinates
are dense in all single-rank operators, so as the convergence holds for the former,
by Corollary 1.4.3 it holds for the latter.

Another application of Corollary 1.4.3 tells us that the convergence holds
for arbitrary compact operators.
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2.5 Extending modules to the additive hull and
approximate projectivity

In this section we show that all Hilbert modules over a C∗-category A extend
to Hilbert modules over the additive hull A⊕. We use for this the following
lemma of Mitchener’s, whose proof we include for completeness:

Lemma 2.5.1 ([Mit02b, Lemma 3.13]). If E is a Hilbert module over a C*-
category A, then an operator T : E → E is a positive element of the C*-algebra
L(E,E) if and only if for every x ∈ ObA and e ∈ E(x), the inner product
⟨e, Te⟩ ∈ A(x, x) is positive.

Proof. For the rightward implication: by Lemma 1.1.13 if T is positive we can
write it as T = S∗S for some S ∈ L(E,E), so then ⟨e, Te⟩ = ⟨Se, Se⟩ for all e,
and this second term is always positive.

For the converse, suppose T has the stated property, then T is self-adjoint
since ⟨Te, e⟩ = ⟨e, Te⟩∗ = ⟨e, Te⟩ for all e. Hence by Lemma 1.1.15, T decom-
poses as the difference of two positive operators T = S −Q such that SQ = 0.
But then for all e we have

0 ≤ ⟨Qe, TQe⟩ = ⟨Qe,−Q2e⟩ = ⟨e,−Q3e⟩.

But Q, and hence Q3 is positive (by Lemma 1.1.19) so by the first part this
implies Q = 0 and we see T is positive.

To begin building the extension of E to A⊕, we use the above lemma
to prove in isolation the positivity axiom, which is of independent interest
elsewhere:

Lemma 2.5.2 (c.f. [Lan95, Lemma 4.2]). If E is a right Hilbert module over A
and we have a sequence of elements e1 ∈ E(x1), . . . , en ∈ E(xn), then the n×n
matrix µe with (i, j)-th entry ⟨ei, ej⟩ is a positive element of the C∗-algebra
Mx1,..,xn(A)

Proof. Consider the right Hilbert A-module F = hx1
⊕ ...⊕ hxn

. By Proposi-
tion 2.4.11 and Lemma 2.3.9 we have Mx1,..,xn

(A) ∼= K(F ). So if we can show
that for every y ∈ ObA and f ∈ F (y), the inner product ⟨f, µef⟩F ∈ A(y, y)
is positive, then by Lemma 2.5.1, µe is a positive element of L(F ), and hence
of Mx1,..,xn

(A).
To do this, let f = (f1, . . . , fn) where fi ∈ A(y, xi). Then

⟨f, µef⟩F =
∑
i

(f∗i
∑
j

⟨ei, ej⟩Efj) =
∑
i

(f∗i
∑
j

⟨ei, ejfj⟩E)

=
∑
i

∑
j

⟨eifi, ejfj⟩E

= ⟨
∑
i

eifi,
∑
j

ejfj⟩E .
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This is a positive element of A(y, y) by the assumption that E is a Hilbert
module. Hence it follows that µe is positive.

The above lemma first appeared as [Mit02b, Lemma 3.14], but as far as we
can see the proof given there does not quite work: it is unclear how to define
the action of the matrix algebra on the supposed Hilbert module.

To extend an arbitrary Hilbert module from A to A⊕, note firstly that by
Lemma 1.2.4, any Hilbert module E : Aop → VectC,0 lifts to a complex linear
functor E⊕ : (A⊕)

op → VectC,0. We need to show that if E is a right Hilbert
module, then E⊕ can be given an inner product making it into a right Hilbert
A⊕-module.

We do this as follows:

Proposition 2.5.3. Let E : Aop → VectC,0 be a right Hilbert A-module. Then
there is a unique extension E⊕ : (A⊕)

op → VectC,0 of E to A⊕ with

E⊕({x1, .., xn}) := E(x1)⊕ · · · ⊕ E(xn)

and matrices of A-morphisms mapping sums to sums in the obvious way.
Furthermore, E⊕ has the structure of a right A⊕-Hilbert module with inner

products

⟨−,−⟩ : E⊕({y1, .., yk})× E⊕({x1, .., xn}) → A⊕({x1, .., xn}, {y1, .., yk})

defined by

⟨(f1, .., fk), (e1, .., en)⟩E⊕ := [⟨fj , ei⟩E ].

Proof. The unique extension E⊕ : (A⊕)
op → VectC,0 is defined by Lemma 1.2.4,

so we only need to show the Hilbert module axioms.
The involution and naturality axioms both follow immediately from the

definition of ⟨−,−⟩E⊕ . The positivity axiom is the content of Lemma 2.5.2.
To prove the completeness property, note that from the arguments about

norms in the proof of Proposition 1.2.3, we have

max
i

∥ei∥ ≤ ∥(ei)∥ ≤ n2 max
i

∥ei∥

so a Cauchy sequence of vectors in E⊕((xi)) =
⊕

iE(xi) must be a Cauchy
sequence in each coordinate and converge to the coordinate-wise limit.

Finally, to find a set generating E⊕, suppose that S = {e ∈ E(xe)} is a set
generating E across all objects, and that S⊕ = {e ∈ E⊕({xe})} is the ‘same
set’ in E⊕. Then by considering ‘column’ matrices in A⊕(xe, x1⊕· · ·⊕xn) with
one non-zero entry, we easily see that the subspaces E(xi) ⊆ E⊕({x1, . . . , xn})
are in ⟨S⊕⟩. But then clearly ⟨S⊕⟩ is all of E⊕.

Hence E⊕ satisfies all axioms of a right Hilbert module over A⊕.

We prove a lemma clarifying the operation of finite-rank operators on right
A⊕-Hilbert modules.
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Lemma 2.5.4. Suppose E,F are right Hilbert modules over A⊕. For all lists
x = {x1, . . . , xn} ∈ Ob(A⊕) and tuples of elements (ei) ∈ E(x), (fi) ∈ F (x),

we have θ
(fi),(ei)
x =

∑n
i=1 θ

fi,ei
xi

.

Proof. This follows from the definition of the inner product: for any z ∈ ObA
and d ∈ E(z) we have

θ
(fi),(ei)
(xi)

(d) := (fi) · ⟨(ei), d⟩ = (fi) · [⟨e1, d⟩ · · · ⟨en, d⟩]
= F⊕([⟨e1, d⟩ · · · ⟨en, d⟩])((fi))
= [F (⟨e1, d⟩) · · ·F (⟨en, d⟩)]((fi))
= F (⟨e1, d⟩)(f1) + · · ·+ F (⟨en, d⟩)(fn)
= f1 · ⟨e1, d⟩+ · · ·+ fn · ⟨en, d⟩
=

∑n
i=1 θ

fi,ei
xi

(d).

We end this chapter with a powerful result which says that any Hilbert
module E has an approximate identity consisting of self-adjoint operators that
factor through finitely generated free modules. The results here are a direct
adaptation and generalization of those in [Ble97, Section 3].

Lemma 2.5.5. If E is a right Hilbert A-module, then the C∗-algebra K(E)
has an approximate unit {uλ : λ ∈ Λ} consisting of operators uλ =

∑
e∈I(λ) θ

e,e
xe

where each I(λ) is a finite list of module elements e ∈ E(xe), where xe ∈ ObA.

Proof. Note that the right ideal of finite-rank operators is dense in K(E), so
by [Bro77, Theorem 2.1], there is an increasing approximate unit consisting of
elements uλ =

∑
r∈Rλ

r∗r, where each Rλ is a finite list of finite-rank operators.

Take one such operator r =
∑n
i=1 θ

fi,ei
xi

, then we have

r∗r =
∑

1≤i,j≤n

θei,fixi
θfj ,ejxj

=
∑

1≤i,j≤n

θ
ei,θ

ej,fj
xj

(fi)
xi =

∑
1≤i,j≤n

θei,ej ·⟨fj ,fi⟩xi
.

Note by Lemma 2.5.2 the matrix µf ∈ Mx1,...,xn
(A) with (i, j)-th entry

⟨fi, fj⟩ is positive, so by Lemma 1.1.13 there is a matrix N with entries nij
such that NN∗ = µf . Hence extending E over A⊕ and using Lemma 2.5.4 we
get

r∗r = θ
(ei),(ei)·NN∗

⊕ixi
= θ

(ei)·N,(ei)·N
⊕ixi

=

n∑
i=1

θ
∑

j ej ·nij ,
∑

j ej ·nij

xi ,

giving an approximate unit of the described form.

We can then deduce the following generalization of one direction in [Ble97,
Theorem 3.1].
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Theorem 2.5.6. If E is a right Hilbert A-module, then there is a set of oper-
ators

{ϕλ :
⊕
x∈Sλ

hx → E : λ ∈ Λ},

where each Sλ is a finite list of A-objects, such that the net of operators ϕλϕ
∗
λ

converges strongly∗ to idE.

Proof. By the previous lemma, K(E) has an approximate unit {uλ : λ ∈ Λ}
consisting of operators uλ =

∑
x∈Sλ

θex,exx . It then follows from Lemma 2.3.12
that the map ϕλ :

⊕
x∈Sλ

hx → E defined on hx(y) = A(y, x) by a 7→ ex · a is
bounded and has adjoint ϕ∗λ with components

ϕ∗λ :
E(y) → hx(y)
e′ 7→ ⟨ex, e′⟩

and one easily verifies ϕλϕ
∗
λ(e) = uλ(e). Hence Lemma 2.3.8 gives us the

required convergence result.

Remark 2.5.7. Note that we do not have that Sλ ⊂ Sλ′ for λ < λ′, and even if
we did, it would not follow that ϕλ′ restricts to ϕλ. Hence Theorem 2.5.6 does
not allow us to embed E as a direct summand of a single infinite-dimensional
free module: to do so would give an untenable generalization of the Kasparov
stabilization theorem, contradicting the results in e.g. [Li10].

As an easy consequence we deduce that a Hilbert module with compact
identity must be finitely generated projective:

Proposition 2.5.8. If a right Hilbert A-module E has idE ∈ K(E), then E
must be finitely generated and projective. If A is unital, the converse holds, i.e.
any finitely generated projective module has compact unit.

Proof. As noted before, an approximate unit in a unital algebra converges in
the norm to the identity. Therefore if K(E) is unital, then by Lemma 2.5.5 the
module E must have a finite set of elements e1 ∈ E(x1), . . . , en ∈ E(xn) such
that ∥ idE −

∑n
i=1 θ

ei,ei
xi

∥ < 1. But then as θei,eixi
is normal, a simple functional

calculus argument shows that
∑n
i=1 θ

ei,ei
xi

is invertible: a function with distance
less than 1 from the constant function at 1 clearly has a multiplicative inverse.
So decomposing as in Theorem 2.5.6 we see that in fact there is a compact
operator ϕ :

⊕n
i=1 hxi

→ E such that ϕϕ∗ : E → E is an isomorphism. Suppose
it has inverse ψ, then one easily verifies that ϕ∗ψϕ :

⊕n
i=1 hxi

→
⊕n

i=1 hxi
is a

projection with image isomorphic to E.
For the partial converse, suppose A is unital, then for any x ∈ ObA we

have L(hx, hx) ∼= MA(x, x) ∼= A(x, x) ∼= K(hx, hx) so we see that for any
list x1 . . . xn ∈ ObA the module

⊕n
i=1 hxi

has a compact unit given by a
diagonal matrix of identities idxi

. So if E is a direct summand of
⊕n

i=1 hxi
,

we immediately see we can factor the identity of E through that of
⊕n

i=1 hxi
,

meaning idE is compact.



Chapter 3

Tensor products of bimodules

In this chapter we define the tensor product of two right Hilbert bimodules. In
particular, we define for a right Hilbert A-B bimodule E the tensor functor

−⊗AE : Hilb-A → Hilb-B.

We prove that this functor is strongly∗ continuous on bounded subsets and
prove an Eilenberg-Watts theorem stating that all unital functors satisfying this
continuity requirement are in fact given by tensor products with bimodules. We
finish with a Morita theorem, i.e. a result characterizing those bimodules that
tensor to give equivalences of Hilbert module categories.

As in the previous chapter, A,B, C and D are locally small C∗-categories.

3.1 Tensoring bimodules

In this section we present some basic results on right Hilbert bimodules of
C∗-categories and their tensor products.

Recall from Chapter 2 that a right Hilbert A-B bimodule is simply a C∗-
functor F : A → Hilb-B, and that we say F is non-degenerate when the linear
span of

⋃
y∈ObA FA(y, x)(F (y)) is dense in F (x) for all x ∈ ObA, that is: the

linear span of
⋃
y∈ObA FA(y, x)(F (y)(z)) is dense in F (x)(z) for all x ∈ ObA

and z ∈ ObB.
For any a ∈ A(x, y), z ∈ ObB and e ∈ F (x)(z), we write a · e for F (a)(e)

when the action is unambiguous.
Notice that by Proposition 1.1.46, there is a (large) C∗-category

Fun(A,Hilb-B)

of right Hilbert A-B bimodules. A morphism T : E → E′ in this category
is an natural transformation of adjointable maps with a uniform bound ∥T∥
given by supx∈ObA ∥Tx∥L(E(x),E′(x)). There is also a strong∗ topology on the
hom-space Fun(A,Hilb-B)(E,E′) in which Tλ → T if and only if (Tλ)x → Tx
strongly∗ for each x ∈ ObA.

67
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We can easily generalize Proposition 2.2.9 to characterize unitary isomor-
phisms of bimodules:

Proposition 3.1.1. If E and F are right Hilbert A-modules, and T : E ⇒ F is
a bimodule map from E to F , then T is a unitary isomorphism of right Hilbert
A−B bimodules if and only if for all objects x ∈ ObA, the map of B-modules
T (x) : E(x) → F (x) is surjective at every y ∈ ObB and preserves all inner
products.

Proof. It is obvious that a transformation of functors on C∗-categories is a
unitary isomorphism in the functor C∗-category if and only if it is a unitary
isomorphism at any object. So this follows from Proposition 2.2.9.

We continue with our first example of a non-degenerate bimodule.

Lemma 3.1.2. The Yoneda functor ιA : A ↪−→ Hilb-A is a non-degenerate
A−A bimodule.

Proof. Recall from Lemma 2.4.4 that a functor F : A → Hilb-B is non-
degenerate if and only if for every approximate unit (uλ) for A(x, x) and for

every z ∈ ObB and e ∈ F (x)(z) we have uλ · e λ−→ e. But in the case of the
Yoneda functor this follows from Corollary 2.1.9.

Lemma 3.1.3. If A is a unital C∗-category, then a right Hilbert bimodule
E : A → Hilb-B is non-degenerate if and only if it is a unital functor.

Proof. Recall from Corollary 2.4.9 that E is a non-degenerate bimodule if and
only if it is non-degenerate as a functor E : A → M(KHilb-B), and from Re-
mark 1.4.6 that a functor from a unital C∗-category into a multiplier category
is non-degenerate if and only if it is unital. The result follows.

Corollary 3.1.4. Every right Hilbert A-module E can be given the structure of
a non-degenerate right Hilbert C−A bimodule by the unique unital C∗-functor
C → Hilb-A that sends the single object of the former category to E.

We now move on to a discussion of tensor products of bimodules.

Definition 3.1.5. If E : A → Hilb-B and F : B → Hilb-C are right Hilbert
bimodules, their algebraic tensor product E ⊗B F : A → Fun(Cop,VectC,1) is
defined at any two objects x ∈ ObA, z ∈ Ob C by taking the coend

E ⊗B F (x)(z) :=
⊕

y∈ObB

E(x)(y)⊗C F (y)(z)

/
∼

where the relation ∼ is generated by identifying any pair of simple tensor
elements e⊗ f ∈ E(x)(y)⊗C F (y)(z) and e

′ ⊗ f ′ ∈ E(x)(y′)⊗C F (y
′)(z) such

that there exists an element b ∈ B(y, y′) with e′ · b = e and b · f = f ′. The
covariant action of A on this space is defined by a · (e ⊗ f) := (a · e) ⊗ f and
the contravariant C-action is given by (e⊗ f) · c := e⊗ (f · c).
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Note above that since the definition of E⊗B F (x)(z) involves a colimit over
ObB, we’ve had to define it to lie in thet category VectC,1 of large complex
vector spaces. But defining an inner product on the space helps us see that it
is in fact small:

Lemma 3.1.6. For any two right Hilbert bimodules E : A → Hilb-B and
F : B → Hilb-C and for every x ∈ ObA, the value of the algebraic tensor
product E ⊗B F (x) : Cop → VectC,1 can be given an inner product satisfying
the axioms of a large right pre-Hilbert C-module, defined on simple tensors
e⊗ f ∈ E(x)(y)⊗ F (y)(z), e′ ⊗ f ′ ∈ E(x)(y′)⊗ F (y′)(z′) as follows:

⟨e⊗ f, e′ ⊗ f ′⟩ = ⟨f, ⟨e, e′⟩E · f ′⟩F .

Moreover, for all x ∈ ObA, the functor E⊗BF (x) and its completion E⊗̄BF (x)
in the norm resulting from the above inner product are in fact small vector
spaces, and therefore are respectively large pre-Hilbert and Hilbert modules.

Proof. First we show that this inner product is well-defined. Take any tensor
e′ ⊗ f ′ ∈ E(x)(y′)⊗ F (y′)(z′) and suppose that e0 ⊗ f0 ∈ E(x)(y0)⊗ F (y0)(z)
and e1 ⊗ f1 ∈ E(x)(y1) ⊗ F (y1)(z) are equivalent, witnessed by b ∈ B(y0, y1)
with e1 · b = e0 and b · f0 = f1. Then

⟨e0 ⊗ f0, e
′ ⊗ f ′⟩ = ⟨e1 · b⊗ f0, e

′ ⊗ f ′⟩
= ⟨f0, ⟨e1 · b, e′⟩ · f ′⟩
= ⟨f0, b∗⟨e1, e′⟩ · f ′⟩
= ⟨b · f0, ⟨e1, e′⟩ · f ′⟩
= ⟨f1, ⟨e1, e′⟩ · f ′⟩
= ⟨e1 ⊗ f1, e

′ ⊗ f ′⟩.

It is also clear that ⟨e⊗f, e′⊗f ′⟩ = ⟨e′⊗f ′, e⊗f⟩∗, and this tells us the product
is well-defined in the second argument too. Furthermore the inner product is
clearly complex linear in both arguments, so by definition of the equivalence
relation defining the tensor product, the inner product is well-defined.

Naturality under B-morphisms follows from the definition of the action.
Now extend the product linearly to all of E ⊗B F (x). To show this is

positive, note we can extend F to (B⊕)op, and then for all y1, . . . yn ∈ ObB
and ei ∈ E(x)(yi), fi ∈ F (yi)(zi) we have

⟨
∑n
i=1 ei ⊗ fi,

∑n
i=1 ei ⊗ fi⟩ =

∑i=n,j=n
i=1,j=1 ⟨ei ⊗ fi, ej ⊗ fj⟩

=
∑i=n,j=n
i=1,j=1 ⟨fi, ⟨ei, ej⟩ · fj⟩

= ⟨f,M · f⟩⊕jF (yj)

where f = (f1, · · · , fn) andM is the n×nmatrix whose (i, j)-th entry is ⟨ei, ej⟩.
Lemma 2.5.2 tells usM is positive, but notice that it follows immediately from
Lemma 1.1.13 that F (M), which gives the action of M on f, is positive too,
and again by Lemma 2.5.1 we get that ⟨

∑n
i=1 ei ⊗ fi,

∑n
i=1 ei ⊗ fi⟩ is positive.

We show finally that E ⊗B F (x)(z) is in fact a small vector space for all
x ∈ ObA, z ∈ Ob C. Let S be a set of elements s ∈ E(x)(ys) generating
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E(x) ∈ Hilb-B. Suppose that e = Σni=1µisi + Σmj=1sj · bj , where for all i and
j we have si ∈ S ∩ E(x)(y), µi ∈ C, sj ∈ S, and bj ∈ B(y, ysj ). Then for any
f ∈ F (y)(z), using the relationship ∼ on the second sum defining e, we see in
fact that

e⊗ f ∈
⊕

ys∈ObB:s∈S

E(x)(ys)⊗C F (ys)(z)

/
∼

noting that this coend is indexed by a set and is hence a small vector space. But
of course by definition of S generating E(x), elements e of the form described
are dense in E(x)(y). Now approximating an arbitrary e ∈ E(x)(y) by a
sequence of finite sums en as above, we see by definition of the seminorm on
E ⊗B F (x)(z) that en⊗ f −→ e⊗ f as n→ ∞. Hence the small coend above is,
before we complete, dense in the space of finite sums of simple tensors in the
given seminorm. But then every element of E⊗BF (x)(z) can be identified with

some Cauchy sequence of elements in
⊕

ys∈ObB:s∈S E(x)(ys)⊗C F (ys)(z)

/
∼,

and hence E ⊗B F (x)(z) is a set. It is easy to see that the space obtained by
quotienting out elements with seminorm zero and completing is again small,
and this is of course exactly E⊗̄BF (x)(z).

Lemma 3.1.7. For each x ∈ ObA, the large right Hilbert module E⊗̄BF (x)
is in fact a right Hilbert module, i.e. is generated by a set of elements. The
spaces E⊗̄BF (x)(z) assemble to a right Hilbert A-C bimodule

E⊗̄BF : A → Hilb-C .

Proof. Let S be a set of elements s ∈ E(x)(ys) generating E(x), and for each
s let Ts be a set of elements generating F (ys) ∈ Hilb-C. Then like above, we
can use the relation ∼ and the definition of the norm to show that the set
{s⊗ t : s ∈ S, t ∈ Ts} generates E⊗̄BF (x)(−).

It is trivial to show that the action in Definition 3.1.5 gives a linear action of
A on the modules E⊗̄BF (x) which is moreover compatible with the involution,
proving the final part.

A basic result on tensor products of bimodules is that they are associative
up to unitary isomorphism:

Lemma 3.1.8. If E,F, and G are respectively A-B,B-C and C-D right Hilbert
bimodules, there is a canonical unitary isomorphism

E⊗̄B(F ⊗̄CG) ∼= (E⊗̄BF )⊗̄CG.

Proof. This isomorphism is given on simple tensors by e⊗(f⊗g) 7→ (e⊗f)⊗g. It
is elementary to verify that it is in fact a unitary isomorphism which is natural
in all three modules.

In addition, the Yoneda bimodule functions as a tensor identity for non-
degenerate bimodules:
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Lemma 3.1.9. If E is a right Hilbert A-B bimodule there is a canonical isom-
etry of right Hilbert A-B bimodules

Uℓ : (ιA)⊗̄AE
∼=−→ E

which is a unitary isomorphism if E is non-degenerate. Furthermore, there is
always a canonical unitary isomorphism

Ur : E⊗̄B(ιB)
∼=−→ E

of right Hilbert A-B bimodules.

Proof. The first map is given on simple tensors by Uℓ(a ⊗ e) = a · e, and the
second by Ur(e⊗ b) = e · b. It is elementary to verify that these maps respect
the equivalence relation defining the uncompleted tensor product. They also
preserve inner products:

⟨Uℓ(a⊗ e), Uℓ(a
′ ⊗ e′)⟩ = ⟨a · e, a′ · e′⟩

= ⟨e, a∗a′ · e′⟩
= ⟨e, ⟨a, a′⟩hx

· e′⟩
= ⟨a⊗ e, a′ ⊗ e′⟩

and

⟨Ur(e⊗ b), Ur(e
′ ⊗ b)⟩ = ⟨e · b, e′ · b′⟩

= b∗⟨e, e′⟩b′
= ⟨b, ⟨e, e′⟩ · b′⟩hx

= ⟨e⊗ b, e′ ⊗ b′⟩
meaning they are isometric and we can extend them to isometries on the whole
module by Lemma 1.4.4. Note that if e ∈ E(x)(y) and (uλ) is an approximate

unit for A(x, x), then uλ ·e
λ−→ e if E is non-degenerate, and furthermore if (vµ)

is an approximate unit for B(y, y) then e · vµ
µ−→ e by Corollary 2.1.9. Hence

by applying Theorem 2.1.10, we see Uℓ is surjective when E is non-degenerate
and Ur is always surjective. Hence by Proposition 3.1.1 we get the unitary
isomorphism claims.

It is elementary to verify that the inverses of these maps are in fact their
adjoints, and that they are natural in E.

We deduce that the tensor product functor is an extension (through the
Yoneda embedding) of a bimodule from representable modules to arbitrary
modules:

Corollary 3.1.10. If E : A → Hilb-B is a non-degenerate right Hilbert A-B
bimodule, then there is for each x ∈ ObA a unitary isomorphism of B-modules
ρx : hx⊗̄AE → E(x), given on simple tensors a⊗ e ∈ A(x′, x)⊗ E(x′)(y) by

ρx(a⊗ e) = a · e ∈ E(x)(y).

This isomorphism is moreover natural in x.
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Proof. The map ρx is obtained by taking the component at x of the map Ur
from Lemma 3.1.9. Naturality of ρx in x is obvious, and naturality of its
adjoint/inverse follows from this.

Before we move onto our next proposition we need an intermediate lemma
on positive operators. Recall that if a and b are two elements of a C∗-algebra
A, we say a ≥ b if the element a− b is positive.

Lemma 3.1.11. If S is a positive operator on a right Hilbert D-module H,
then for any x ∈ ObD, h ∈ H(x) we have ∥S∥⟨h, h⟩ ≥ ⟨h, Sh⟩ in the C∗-algebra
D(x, x). Furthermore, if S ≥ Q ≥ 0, we have ∥⟨h, Sh⟩∥ ≥ ∥⟨h,Qh⟩∥. If S is
any operator, we have ⟨Sh, Sh⟩ ≤ ∥S∥2⟨h, h⟩.

Proof. Note by functional calculus in L(H) we have ∥S∥ idH ≥ S ≥ 0 and
hence ∥S∥ idH −S ≥ 0, hence by Lemma 2.5.1 we get

∥S∥⟨h, h⟩ − ⟨h, Sh⟩ = ⟨h, (∥S∥ idH −S)h⟩ ≥ 0.

If S ≥ Q ≥ 0 then by applying Lemma 2.5.1 to S −Q we have

⟨h, Sh⟩ ≥ ⟨h,Qh⟩ ≥ 0

so ∥⟨h, Sh⟩∥ ≥ ⟨∥h,Qh⟩∥.
The final result is obtained by applying the first result to the positive op-

erator S∗S.

This allows us to prove the functoriality of the tensor product construction.

Proposition 3.1.12. For any right Hilbert B-C bimodule F , a bounded ad-
jointable transformation of A-B bimodules T : E → E′ induces a bounded
adjointable morphism of A− C bimodules

T ⊗B id : E⊗̄BF → E′⊗̄BF

by acting on the first coordinate.

Proof. We first define a map T ⊗B id : E⊗B F → E′ ⊗B F on the uncompleted
Hilbert modules by (T ⊗B id)(e ⊗ f) := T (e) ⊗ f . It is straightforward to
show that (T ⊗B id)∗ = (T ∗)⊗B id functions as an adjoint on the uncompleted
module. To extend the transformation to the completed module, we must show
that T ⊗B id is bounded on sums of simple tensors: more specifically, we will
prove that ∥T ⊗B id ∥ ≤ ∥T∥ on this subspace.

We need to show, for an arbitrary element

g =

n∑
i=1

ei ⊗ fi ∈ E ⊗B F (x)(z)

where ei ⊗ fi ∈ E(x)(yi) ⊗ F (yi)(z), that ∥T∥∥g∥ ≥ ∥(T ⊗ id)(g)∥. Note
that by Proposition 2.5.3 we can extend the right Hilbert B-module E(x) to
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a right Hilbert B⊕-module E(x)⊕, and by Lemma 1.2.4 we can extend the
C∗-functor F : B → Hilb-C to a C∗-functor F⊕ : B⊕ → Hilb-C. So writing
f := (fi) ∈ (F⊕(⊕iyi))(z) and e := E(x)⊕(⊕iyi), we have

∥T∥2∥g∥2 = ∥T∥2∥
∑
i,j⟨fi, F (⟨ei, ej⟩E(x))(fj)⟩F (yi)∥

= ∥⟨f, F⊕(⟨∥T∥e, ∥T∥e⟩E(x)⊕)(f)⟩F⊕(⊕iyi)∥
≥ ∥⟨f, F (⟨Te, Te⟩)(f)⟩∥
= ∥(T ⊗ id)(g)∥2

where the inequality follows from Lemma 3.1.11.
By Lemma 1.4.4 we can extend T ⊗B id to a map on the completed module

T⊗B id : E⊗̄BF → E′⊗̄BF , also bounded by ∥T∥ and with adjoint T ∗⊗̄B id.

We are now going to show that moreover, the tensoring operation above
satisfies a strong∗ continuity requirement.

Lemma 3.1.13. For any right Hilbert B-C bimodule F , the right tensor product
with F , together with the assignment T 7→ T ⊗B id defined above, gives a unital
C∗-functor

−⊗̄BF : Fun(A,Hilb-B) → Fun(A,Hilb-C)

which is strongly∗ continuous on bounded subsets of operators.

Proof. It is easily verified from the definition of T ⊗ id that this assignment
defines a C∗-functor.

So we have only left to show that if Tλ is a bounded net of operators in
L(E,E′) strongly∗ converging to 0, then the net (Tλ⊗id) of bimodule operators
in Fun(A,Hilb-C) strongly∗ converges to 0 too. Note that as the operators are
uniformly bounded, by Lemma 1.4.2 it is enough to show convergence on simple
tensors. So we note

∥(Tλ ⊗ id)(e⊗ f)∥2 = ∥Tλ(e)⊗ f∥2
= ∥⟨f, ⟨Tλ(e), Tλ(e)⟩ · f⟩∥
= ∥⟨f, F (⟨Tλ(e), Tλ(e)⟩)(f)⟩∥
≤ ∥F (⟨Tλ(e), Tλ(e)⟩)∥∥⟨f, f⟩∥
≤ ∥Tλ(e)∥2∥f∥2

where the first inequality follows from the last statement of Lemma 3.1.11, and
the second from the norm-decreasing property of F (see Proposition 1.1.34).
But by hypothesis the last term goes to zero. A similar argument applies to
(Tλ⊗̄ id)∗ = (T ∗

λ ⊗̄ id). Hence (Tλ⊗̄ id) goes to 0 strongly∗.

Remark 3.1.14. From now on we will write ‘strong∗’ instead of ‘strongly∗

continuous on bounded subsets’, for brevity.

We follow with a lemma that says the functoriality of tensor products also
holds on the left.
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Lemma 3.1.15. If E is a right Hilbert A-B bimodule, the left tensor product
with E induces a strong∗ unital C∗-functor

E⊗̄B− : Fun(B,Hilb-C) → Fun(A,Hilb-C).

Proof. This statement is an obvious analogue of the preceding two results and
its proof proceeds similarly: for right Hilbert B-C modules F and F ′ and a
bounded adjointable bimodule map S : F →F ′ we define

id⊗BS : E⊗̄BF →E⊗̄BF
′

by (id⊗BS)(e⊗f) := e⊗S(f) on simple tensors. To show that ∥ id⊗BS∥ ≤ ∥S∥
on finite sums of simple tensors, let

g =

n∑
i=1

ei ⊗ fi ∈ E ⊗B F (x)(z)

where ei⊗fi ∈ E(x)(yi)⊗F (yi)(z). Assume again that B is closed under finite
direct sums, writing f := (fi) ∈ (F (⊕iyi))(z) and e := E⊕(x)(⊕iyi). Then

∥S∥2∥g∥2 = ∥S∥2∥
∑
i,j⟨fi, F (⟨ei, ej⟩)(fj)⟩∥

= ∥⟨f, ∥S∥2F (⟨e, e⟩)(f)⟩∥
≥ ∥⟨f, (S∗ ◦ F (⟨e, e⟩) ◦ S)(f)⟩∥
= ∥⟨S(f), F (⟨e, e⟩)(S(f))⟩∥
= ∥(id⊗S)(g)∥2

where in the inequality we have used Lemma 1.2.9 together with Lemma 3.1.11.
Hence id⊗BS is bounded by ∥S∥ and can be extended to a natural transfor-
mation on the whole module; it also clearly has adjoint id⊗BS

∗.
To prove strong∗ continuity on bounded subsets of operators, note that

∥(id⊗S)(e⊗ f)∥2 = ∥e⊗ S(f)∥2
= ∥⟨S(f), F (⟨e, e⟩)(S(f))⟩∥
≤ ∥F (⟨e, e⟩)∥∥⟨S(f), S(f)⟩∥
≤ ∥e∥2∥S(f)∥2

where we have used the first part of Lemma 3.1.11 for the first inequality
and the norm-decreasing property of F for the second. Hence just as in the
previous proof we deduce that if (Sλ) is a bounded net of transformations in
Fun(C,Hilb-C) strongly∗ converging to zero, then (id⊗Sλ) converges strongly∗
to zero too.

It turns out that if E is non-degenerate, the above functor has image entirely
in non-degenerate bimodules:

Lemma 3.1.16. If E : A → Hilb-B is a non-degenerate right Hilbert bimod-
ule and F : B → Hilb-C is any right Hilbert bimodule, then the right Hilbert
bimodule E⊗̄BF : A → Hilb-C is also non-degenerate.
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Proof. By the characterization in Theorem 1.4.5, it suffices to show that for
any element g ∈ E⊗̄BF (x)(z), and approximate unit (uλ) for A(x, x), that

uλ · g
λ−→ g in norm. Consider first a simple tensor e⊗ f ∈ E(x)(y)⊗ F (y)(z):

note that

∥uλ · (e⊗ f)− e⊗ f∥2 = ∥(uλ · e− e)⊗ f∥2
= ∥⟨f, F (⟨uλ · e− e, uλ · e− e⟩)(f)⟩∥

and this last term tends to zero since uλ ·e
λ−→ e in the norm and F is bounded.

Hence by Corollary 1.4.3 we obtain the case for general g, since every g is
by definition a norm-limit of finite sums of simple tensors.

Letting now A = C and noting that by Lemma 3.1.3 a non-degenerate right
Hilbert bimodule whose left action comes from C is simply a right Hilbert
module, we easily derive the following proposition from Lemma 3.1.15 and
Lemma 3.1.16:

Proposition 3.1.17. Given a right Hilbert B-C bimodule E, the tensor product
above defines a strong∗ unital C∗-functor

−⊗̄BE : Hilb-B → Hilb-C .

We derive a corollary that characterizes which bimodules preserve compact
operators upon tensoring.

Corollary 3.1.18. For a given right Hilbert A-B bimodule E : A → Hilb-B, the
tensor product functor −⊗̄AE : Hilb-A → Hilb-B preserves compact morphisms
if and only if E has image entirely in compact morphisms.

Proof. Since by Corollary 3.1.10 we have E ∼= (−⊗̄AE)◦ιA and by Lemma 2.3.9
the image of ιA consists of compact operators, the ‘only if’ direction is clear.

For the converse, note that by Proposition 2.3.14 the ideal KHilb-A is gen-
erated by the image of ιA, so if E has image in KHilb-B, we have that −⊗̄AE
sends all of KHilb-A to compact morphisms since it is an extension of E through
ιA.

The point of the following section is to prove a converse to Proposition 3.1.17:
that is, to prove that up to unitary isomorphism, tensor products by right
Hilbert B-C bimodules in fact make up all strong∗ unital functors from Hilb-B
to Hilb-C.

3.2 The Eilenberg-Watts theorem

In this section we prove the C∗-categorical Eilenberg-Watts theorem, which
establishes a 1-1 correspondence between bimodules and strong∗ functors on
categories of Hilbert modules. We begin by establishing the Eilenberg-Watts
map and its naturality.
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Definition 3.2.1. If F : Hilb-A → Hilb-B is a strong∗ unital C∗-functor, E is
the composition E := F ◦ ιA : A→Hilb-B, and M is a right Hilbert A-module,
we define the Eilenberg-Watts map

ψM :M ⊗A E → F (M)

on simple tensors m⊗ e ∈M(x)⊗ E(x)(z) by

ψM (m⊗ e) := F (ϵm)(e) ∈ F (M)(z),

where ϵm ∈ K(hx,M) is defined as in Lemma 2.3.12.

Lemma 3.2.2. The Eilenberg-Watts map as defined above is well-defined and
extends to an map ψM : M⊗̄AE → F (M) on the completed module which is
natural in M and in F , and which moreover preserves all inner products.

Proof. We show first that ψ is well-defined on the uncompleted moduleM⊗AE:
recall thatm⊗e ∈M(x)⊗E(x)(z) andm′⊗e′ ∈M(x′)⊗E(x′)(z) are identified
in M ⊗AE(z) whenever there exists an element a ∈ A(x, x′) such that we have
m′ · a = m and a · e = e′. But then

ψx(m
′ ⊗ e′) = F (ϵm′)(e′) = F (ϵm′)(a · e)

= F (ϵm′ ◦ ι(a))(e) = F (ϵm′·a)(e)
= F (ϵm)(e) = ψx(m⊗ e).

To see that ψ is a map of B-modules, take m⊗ e ∈M(x)⊗ E(x)(z) and a
morphism b ∈ B(z′, z). Then note

ψ((m⊗ e) · b) = ψ(m⊗ (e · b)) = F (ϵm)(e · b) = F (ϵm)(e) · b = ψ(m⊗ e) · b

as F (ϵm) is a B-module map.
To extend ψ and show that it preserves inner products, take simple tensors

m ⊗ e ∈ M(x) ⊗ E(x)(z) and m′ ⊗ e′ ∈ M(y) ⊗ E(y)(z), and note that from
Lemma 2.3.12 we get that ϵ∗m′ϵm = ι(⟨m′,m⟩). So we have

⟨ψ(m⊗ e), ψ(m′ ⊗ e′)⟩ = ⟨F (ϵm)(e), F (ϵm′)(e′)⟩ = ⟨e, F (ϵ∗m′ϵm)(e)⟩
= ⟨e, E(⟨m,m′⟩)(e)⟩ = ⟨m⊗ e,m′ ⊗ e′⟩.

Hence we see ψ preserves all inner products on simple tensors and finite sums
thereof, so by Lemma 1.4.4 it extends to an isometry on M⊗̄AE which must
also preserve inner products.

Recall from Lemma 2.3.12 that for a bounded adjointable operator of right
Hilbert A-modules ϕ : M → N we have ϕ ◦ ϵm = ϵϕ(m). To prove naturality
of ψM in M , we must show that F (ϕ) ◦ ψM = ψN ◦ (ϕ ⊗ id). But note for
m⊗ e ∈M ⊗ E that

(F (ϕ) ◦ ψM )(m⊗ e) = F (ϕ)F (ϵm)(e) = F (ϕϵm)(e)
= F (ϵϕ(m))(e) = ψN (ϕ(m)⊗ e)

= ψN ((ϕ⊗ id)(m⊗ e))

proving naturality on simple tensors, and hence again on the whole module.



3.2. THE EILENBERG-WATTS THEOREM 77

Having defined the natural transformation ψ, we show in a few steps that
it is a natural unitary isomorphism, beginning with the case for representable
modules.

Proposition 3.2.3. For F : Hilb-A → Hilb-B and ψ : −⊗̄A(F ◦ ι) ⇒ F as
above, ψ is a unitary isomorphism on the subcategory of representable right
Hilbert A-modules and their finite direct sums.

Proof. We have shown so far that ψ preserves all inner products, so by Propo-
sition 2.2.9 we only have left to show that for each x ∈ ObA, the B-module
map ψhx

: hx ⊗A (F ◦ ι) → F (hx) is surjective at each y ∈ ObB. But this is
just an instance of Corollary 3.1.10 for the bimodule F ◦ ι.

Finally, F , being a unital C∗-functor, must preserve finite direct sums, and
we easily deduce ψ is a unitary isomorphism on these, too.

We are now in a position to prove the Eilenberg-Watts theorem using the
finite free approximation result at the end of the previous chapter.

Theorem 3.2.4 (c.f. [Ble97, Theorem 5.4]). If F : Hilb-A→Hilb-B is a strong∗

unital functor, the Eilenberg-Watts map ψM :M⊗(F ◦ιA) → F (M) is a unitary
isomorphism on every right Hilbert A-module M .

Proof. As above, we only have left to show that ψM is surjective at every
y ∈ ObB. Recall from Theorem 2.5.6 that there exists a set of operators
ϕλ :

⊕
x∈Sλ

hx → M , where each Sλ : λ ∈ Λ is a finite list of B-objects, such
that the net of operators ϕλϕ

∗
λ converges strongly∗ to idM . Writing S for Sλ

we have a diagram

M⊗̄AE F (M)

(⊕Shs)⊗̄AE F (⊕Shs)

ϕ∗
λ⊗id

ψM

F (ϕ∗
λ)ϕλ⊗id

ψ⊕Shs

F (ϕλ)

where the two squares with vertical arrows pointing in the same direction
both commute by the naturality of ψ. We aim to show the top horizontal
map is surjective at any y ∈ ObB, so take an arbitrary f ∈ F (M)(y). We
know by Proposition 3.2.3 that ψ⊕Shs is surjective at every object, so we have
F (ϕ∗λ)(f) = ψ⊕Shs

(t) for some t ∈ (⊕Shs)⊗̄AE(y).
So we have

F (ϕλϕ
∗
λ)(f) = F (ϕλ)(ψ⊕Shs

(t)) = ψM ((ϕλ ⊗ id)(t)) ∈ im ψM .

But F is strong∗ and unital and ϕλϕ
∗
λ is a bounded net, so F (ϕλϕ

∗
λ)

λ−→ idF (M)

strongly∗, and we get F (ϕλϕ
∗
λ)(f)

λ−→ f . So ψM has dense image, so by
Lemma 1.4.4 it is surjective.

There is a related result about module categories that uses the approximate
projectivity of Hilbert modules in a similar way:
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Lemma 3.2.5. Suppose F, F ′ : Hilb-A → Hilb-B are strong∗ unital C∗-functors,
and let

η, ζ : F ⇒ F ′

be two (bounded, adjointable) natural transformations. If η and ζ agree on
representable modules, then η = ζ.

Proof. Since η − ζ : F ⇒ F ′ is another bounded adjointable natural transfor-
mation, it suffices to show that if ξ : F ⇒ F ′ is zero on representable modules,
then ξ = 0.

Recall once more from Theorem 2.5.6 that there exists a set {ϕλ : λ ∈ Λ}
of bounded adjointable operators ϕλ :

⊕
x∈Sλ

hx → M (where Sλ is a finite
list of B-objects for each λ ∈ Λ) such that the net of operators ϕλϕ

∗
λ converges

strongly∗ to idM . We hence have for each S := Sλ a diagram

F (M) F ′(M)

F (⊕Shs) F ′(⊕Shs)

F (ϕ∗
λ)

ξM

F ′(ϕ∗
λ)F (ϕλ)

ξ⊕Shs

F ′(ϕλ)

We want to show for an arbitrary f ∈ F (M)(x), x ∈ ObB that ξM (f) = 0.

Since F (ϕλ)F (ϕ
∗
λ)

λ−→ idF (M) strongly∗, we have F (ϕλ)F (ϕ
∗
λ)(f) → f . At the

same time, since ξ⊕Shs
= 0, by naturality of ξ we get

(ξM ◦ F (ϕλ) ◦ F (ϕ∗λ))(f) = (F ′(ϕλ) ◦ ξ⊕Shs
◦ F (ϕ∗λ))(f) = 0.

Hence we have a net of elements converging in the norm to f which are in the
kernel of the bounded map ξM , so ξM (f) = 0.

Another way of formulating this result is: if η : −⊗̄AE ⇒ ⊗̄AE
′ is any

transformation of tensor product functors, it is in fact given on each module
by tensoring with a fixed module map ϵ : E→E′, which can be obtained by
whiskering η through ιA.

3.3 Bi-Hilbert and imprimitivity modules

Up until now we have discussed bimodules which have inner products valued
in the C∗-category acting on the right. In this section we discuss bimodules
with products in both categories, and see that a subclass of these ‘bi-Hilbert’
bimodules are exactly those bimodules that give Morita equivalences, that is
equivalences of module categories.

The thesis [Fer23] investigated the same question for small C∗-categories,
with one key step being a result ([Fer23, Theorem 6.3.1]) saying that each
small C∗-category is Morita equivalent to a C∗-algebra. We do not assume
smallness so we take a somewhat different approach, adapting directly the
results from [RW98, Chapter 3] and [Ech+06, Chapter 1] that characterize
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which bimodules give Morita equivalences in the C∗-algebra case. The afore-
mentioned category-algebra equivalence becomes an example in this framework
(see Proposition 3.4.9).

We begin by setting up the tools for ‘switching’ between two actions of
non-unital categories.

For the following lemmas, recall from Definition 1.1.39 that for a C∗-
category A we denote by A+ the minimal unitization of A and from Defi-
nition 1.1.41 that for any C∗-category A and unital complex category C we
denote by Funu(A, C) the category of functors from A to C that restrict to
unital maps on all unital endomorphism algebras in A.

Lemma 3.3.1. Let A be a C∗-category and E : Aop →VectC,0 be a right Hilbert
A-module. Then E is an object of Funu(A,VectC,0).

Proof. We need to show that any existing units in A act unitally on the com-
ponent spaces of E: but this follows immediately from Corollary 2.1.11.

Lemma 3.3.2. Let A and B be C∗-categories. There exist natural isomor-
phisms

Funu(A,Funu(Bop,VectC,0)) ∼= Funu(A+,Funu(Bop+,VectC,0))
∼= Funu(A+ × Bop+,VectC,0) ∼= Funu(Bop+,Funu(A+,VectC,0))

∼= Funu(Bop,Funu(A,VectC,0)).

Proof. The first and final isomorphisms follow by repeated application of Propo-
sition 1.1.42, and the middle two are simply currying of unital functors.

For the rest of this chapter we will identify functors with their images under
these isomorphisms, for the sake of conceptual simplicity.

Finally, recall from Section 2.1 that we can define a left Hilbert A-module
as a right Hilbert Aop-module, or equivalently as a functor E : A→VectC,0
with inner products ⟨−,−⟩ : E(x) × E(y) → A(y, x) which are linear in the
first variable and conjugate linear in the second, such that ⟨a · e, f⟩ = a◦ ⟨e, f⟩,
and such that they satisfy the rest of the Hilbert module axioms verbatim.

Definition 3.3.3. If A and B are C∗-categories, a bi-Hilbert A-B bimodule is a
functor E : A+ ×Bop+ → VectC,0 which is equipped for all x ∈ ObA, y ∈ ObB
with A-valued products

A⟨−,−⟩ : E(x′)(y)× E(x)(y) → A(x, x′)

and B-valued products

⟨−,−⟩B : E(x)(y′)× E(x)(y) → B(y, y′)

which give E (or rather, its images under Lemma 3.3.2) the structure of both an
A-B right Hilbert bimodule and a Bop-Aop right Hilbert bimodule. Unpacking
this a little, we require that:
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• E(x)(−) is a right Hilbert B-module for each x ∈ ObA, with product
⟨−,−⟩B and right action by morphisms of the form (idx, b).

• E(−)(y) is a left Hilbert A-module for each y ∈ ObB, with product

A⟨−,−⟩ and left action by morphisms of the form (a, idy)

• The action of a ∈ A on the B-modules is bounded by ∥a∥ and adjoint
to the action of a∗; similarly for the action of b ∈ B on the A-modules.
Writing this out in equations, we get

⟨e, a · f⟩B = ⟨a∗ · e, f⟩B and ∥⟨a · e, a · e⟩B∥ ≤ ∥a∥2∥⟨e, e⟩B∥
A⟨e, f · b⟩ = A⟨e · b∗, f⟩ and ∥A⟨e · b, e · b⟩∥ ≤ ∥b∥2∥A⟨e, e⟩∥.

We write
E1 : A → Hilb-B

and
E2 : Bop → Hilb-Aop

for the two right Hilbert bimodule ‘components’ of E when it is necessary to
consider them separately, but will generally speak simply of E. These two
bimodules are automatically non-degenerate:

Lemma 3.3.4. If E is a bi-Hilbert bimodule, the bimodules E1 : A → Hilb-B
and E2 : Bop → Hilb-Aop are non-degenerate.

Proof. Take any x ∈ ObA, y ∈ ObB, e ∈ E(x)(y), and note that we can identify
E(x)(y) = E1(x)(y) = E2(y)(x). By Lemma 2.4.4 it suffices to show that for

any approximate unit (uλ) for A(x, x) we have E1(uλ)(e)
λ−→ e. But note that

E1(uλ)(e) = e · uλ ∈ E2(y)(x), and that (uλ) is certainly an approximate unit

of Aop(x, x). So by Corollary 2.1.9 we have that e ·uλ
λ−→ e, proving the lemma.

The non-degeneracy of E2 follows similarly.

Definition 3.3.5. For any right Hilbert bimodule E : A → Hilb-B, we let

⟨E,E⟩

denote the subcategory of B given by the linear span of the inner products
⟨e, f⟩ ∈ B(y, y′) for all objects x ∈ ObA, y, y′ ∈ ObB and module elements
e ∈ E(x)(y′), f ∈ E(x)(y). Noting that this subcategory is closed under the
involution and under multiplication by outside elements, we denote by

⟨E,E⟩

the ideal given by its norm closure. We say that E is essential if ⟨E,E⟩ is an
essential ideal and that E is full if ⟨E,E⟩ = B.

Example 3.3.6. The Yoneda bimodule ιA : A ↪−→ Hilb-A is full: note that
⟨ιA, ιA⟩ consists of all morphisms of A which factorize through some object,
but by Lemma 1.2.7 this is all of A.
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We are interested in bi-Hilbert bimodules that satisfy an additional axiom
on the inner products:

Definition 3.3.7. A bi-Hilbert A-B bimodule E is termed a partial imprim-
itivity A-B bimodule when for all elements e ∈ E(x)(y), f ∈ E(x′)(y) and
g ∈ E(x′)(y′) the imprimitivity equation

A⟨e, f⟩ · g = e · ⟨f, g⟩B,

holds in E(x)(y′). It is called right essential if the bimodule E1 : A → Hilb-B is
essential, right full if E1 is full, left-essential if E2 : Bop → Hilb-Aop is essential
and left-full if E2 is full. A partial imprimitivity bimodule E is called an A-B
imprimitivity bimodule if both E1 and E2 are full.

Remark 3.3.8. In [Ech+06], which treats the C∗-algebra case, bimodules
which are left full in our terminology are termed ‘right partial’, and vice versa.
We modify their terminology here since strictly it implies that modules have
full products on both sides when they are both left and right partial, a rather
unintuitive statement.

Example 3.3.9. The representation bimodule ιA : A ↪−→ Hilb-A can be given
the structure of a bi-Hilbert bimodule by setting for a ∈ hx(y), b ∈ hz(y)
the product A⟨a, b⟩ := a ◦ b∗, and we see immediately that this is a partial
imprimitivity bimodule since A⟨a, b⟩ · c = a ◦ b∗ ◦ c = a · ⟨b, c⟩A. As explained
in the previous example, it is evident that both products are full, so ιA is in
fact an A−A imprimitivity bimodule.

Lemma 3.3.10. If E is a partial imprimitivity A-B bimodule, the two norms
on each space E(x)(y) given by the A- and B-valued product are equal.

Proof. Note that

∥⟨e, e⟩B∥2 = ∥⟨e, e⟩B⟨e, e⟩B∥ = ∥⟨e, e · ⟨e, e⟩B⟩B∥
= ∥⟨e,A⟨e, e⟩ · e⟩B∥ ≤ ∥⟨e, e⟩B∥∥A⟨e, e⟩∥

where the last inequality follows from Lemma 3.1.11.
So for e ̸= 0 we can divide to get ∥⟨e, e⟩B∥ ≤ ∥A⟨e, e⟩∥, and it follows

similarly that ∥A⟨e, e⟩∥ ≤ ∥⟨e, e⟩B∥, proving the lemma.

The imprimitivity equation gives us significant control over both actions:

Lemma 3.3.11. If E is a partial imprimitivity A-B bimodule, the images

E1(A⟨E2, E2⟩(x, x′)) ⊆ L(E1(x), E1(x′))

and

E2(⟨E1, E1⟩B(y, y′)) ⊆ L(E2(y), E2(y′))

both consist of exactly the finite-rank operators.
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Proof. The imprimitivity equation states that E1(A⟨e, f⟩)(g) = θe,f (g), so as
E1 is additive and continuous we get the first result.

The analogous result on E2 follows similarly as the imprimitivity equation
gives E2(⟨f, g⟩B)(e) = θg,f (e).

Given additional information about the products, we can deduce that the
actions of both categories are entirely compact:

Lemma 3.3.12. If E is a left-essential partial imprimitivity A-B bimodule,
then in fact E1 is an isometry on hom-spaces and satisfies

E1(A⟨E2, E2⟩(x, x′)) = K(E1(x), E1(x′)),

and if E is left full, E1 gives a surjection of A(x, x′) onto K(E1(x), E1(x′)).
Similarly, if E is right-essential, E2 acts isometrically and we have

E2(⟨E1, E1⟩B(y′, y)) = K(E1(y), E1(y′)),

and if E is right-full, E2 in addition surjects B(y′, y)) onto K(E1(y), E1(y′)).

Proof. We show that if E is left essential, E1 acts isometrically on hom-spaces.
Suppose E1(a) = 0, then for all e, f we have a ◦ A⟨e, f⟩ = A⟨E1(a)(e), f⟩ = 0,
so as ⟨E2, E2⟩ is essential, we in fact have a = 0. Hence E1 is faithful and
by Proposition 1.1.34 in fact acts isometrically, and in particular preserves
closures of sets. So if E2 is in fact full, clearly the final result on E1 follows
from Lemma 3.3.11.

The dual results follow similarly.

We’d like to build up to a converse to the above lemma, that specifies exactly
when a right Hilbert bimodule is one ‘half’ of an imprimitivity bimodule.

Lemma 3.3.13. If D is a subcategory of Hilb-B containing all the compact
operators between its objects, then for every y ∈ ObB there is a large left
Hilbert D-module

Fy : D→VectC,0

given by

• Fy(D) := D(y) for all D ∈ ObD,

• Fy(T ) := Ty : D(y)→D′(y) for all T ∈ L(D,D′), and

• D⟨d, d′⟩ := θd,d
′

y ∈ K(D′, D)

Proof. Note firstly that θe,f = (θf,e)∗ and that T ◦ θe,f = θT (e),f . To see for
any E ∈ ObD, e ∈ E(y), that D⟨e, e⟩ = θe,ey ∈ KD(E,E) is positive, note that
for all f ∈ E(x) we have ⟨f, θe,ey (f)⟩ = ⟨f, e⟩⟨e, f⟩ ≥ 0, so by Lemma 2.5.1 we
get positivity. Finally if θe,ey = 0, then ⟨e, e⟩2 = ⟨e, θe,e(e)⟩ = 0 so e = 0.

Every space in the bimodule is complete in this norm as it is equivalent to
the B-norm; note that the proof of Lemma 3.3.10 uses only the imprimitivity
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equation and the compatibility of the actions. The action of B is bounded
in the D-norm since by Corollary 2.1.6 it is bounded in the B-norm and the
two norms are equal, and finally it is adjointable since θe,f ·b = θe·b

∗,f . This
completes the proof.

Definition 3.3.14. A subcategory D ⊆ Hilb-B containing all compact oper-
ators between its objects is called left small if for all objects y ∈ ObB, the
large left Hilbert D-module Fy is generated by a set of elements. A bimodule
E : A → Hilb-B is called left small if its image is.

Example 3.3.15. If D ⊆ Hilb-B is small then D is left small by Lemma 2.1.15.

Lemma 3.3.16. If D ⊆ Hilb-B contains every representable right Hilbert B-
module, then it is left small.

Proof. Recall that by Corollary 2.1.11, for allD ∈ ObD, y ∈ ObB and d ∈ D(y)
there exist d′ ∈ D(y) and b ∈ B(y, y) such that d = d′ · b. But then d = ϵd′(b),
where ϵd′ ∈ K(hy, D) is the map defined in Lemma 2.3.12. Therefore we see
that for each y ∈ ObB, the set B(y, y) ⊆ hy(y) generates the D-module Fy.

We can promote the above left-valued product to a left essential imprimi-
tivity bimodule:

Proposition 3.3.17. Suppose D ⊆ Hilb-B is a left small subcategory contain-
ing all compact operators between its objects. Then the inclusion

∆1 : D ↪−→ Hilb-B

can be given the structure of a left-essential D-B imprimitivity bimodule ∆ with
other half

∆2 : Bop → Hilb-Dop

defined by setting ∆2(y) = Fy, where the latter is defined in Lemma 3.3.13.
Furthermore, ∆ is an imprimitivity bimodule if and only if D contains precisely
the compact operators and the bimodule ∆1 : D ↪−→ Hilb-B is full.

Proof. The left action of B on the modules Fy is obvious, and the imprimitivity
equation follows immediately from the definition of D⟨−,−⟩.

Left essentiality follows a fortiori from the fact that KHilb-B is essential
in Hilb-B, and left fullness is clearly equivalent to asking that D contains only
compact operators. So ∆ is an imprimitivity bimodule with described left
product if it is also right full.

Corollary 3.3.18. Every C∗-category B is linked to its own category of right
Hilbert modules and compact operators KHilb-B by an imprimitivity bimodule.

Proof. In the above lemma, simply let D = KHilb-B: this is clearly full by
considering for example the inner products on representable modules, and by
Lemma 3.3.16
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Proposition 3.3.17 and Lemma 3.3.12 together allow us to give a complete
characterization of which bimodules come from imprimitivity bimodules:

Proposition 3.3.19. A bimodule E1 : A → Hilb-B can be given the structure
of a left-full partial imprimitivity bimodule if and only if E1 is left small and is
a faithful functor that surjects onto the compact operators between the modules
in its image. In this case the A-valued product must equal A⟨e, f⟩ = θe,f . This
is an imprimitivity bimodule if and only if E1 is full.

Hence we see that for a given right Hilbert bimodule, being an imprimitivity
bimodule or not is a property rather than a structure.

3.4 Morita equivalences of C∗-categories

The reason to study imprimitivity bimodules is that as in the C∗-algebra case,
they turn out to be exactly the bimodules that induce strong∗ unitary equiva-
lences of Hilbert module categories.

Definition 3.4.1. If E : A+ × Bop+ → VectC,0 is a bi-Hilbert A-B bimodule,
its conjugate

Ẽ : B+ ×Aop+ → VectC,0

is the bi-Hilbert B-A bimodule defined as follows:

• For x ∈ ObA and y ∈ ObB we set Ẽ(y)(x) = E(x)(y)∗, where ∗ denotes
the conjugate of a complex vector space.

• For any morphisms a ∈ A+(x1, x2) and b ∈ B+(y1, y2), and e ∈ E(x2, y2),

we define the action1 by Ẽ(b, a)(ẽ) = ˜E(a∗, b∗)(e), where e.g. ẽ signifies

the element of Ẽ(x2, y2) corresponding to e ∈ E(x2, y2).

• Ẽ has products B⟨−,−⟩ and ⟨−,−⟩A defined by setting B⟨ẽ, f̃⟩ = ⟨e, f⟩B
and ⟨ẽ, f̃⟩A = A⟨e, f⟩ where e.g. ẽ ∈ Ẽ(y)(x) denotes the element of the
conjugate space corresponding to e ∈ E(x)(y).

Just like we write E1 : A→Hilb-B and E2 : Bop →Hilb-Aop for the ‘com-
ponents’ of E, we denote by

Ẽ1 : B → Hilb-A

and
Ẽ2 : Aop → Hilb-Bop

the two right Hilbert bimodules associated to Ẽ. It is immediate that many
properties of Ẽ carry over from E, namely:

1Note that Ẽ is a C-linear functor since Ẽ(λ(a, b))(ẽ) := ˜(E(λa∗, λb∗)(e)) =

˜(λE(a∗, b∗)(e)) = λ( ˜E(a∗, b∗)(e)) = λẼ(a, b)(ẽ).
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• Ẽ is a partial imprimitivity bimodule if and only if E is.

• Ẽ is left essential/full, respectively right essential/full if and only if E is
right essential/full, respectively left essential/full.

Imprimitivity bimodules over small C∗-categories were termed ‘equivalence
bimodules’ in [Fer23]: we stick here to imprimitivity bimodules to emphasize
the analogy with the C∗-algebra case.

We begin by proving that an imprimitivity bimodule is invertible under the
tensor product.

Proposition 3.4.2. If E is a partial imprimitivity bi-Hilbert A-B bimodule,
there are isometric bimodule maps

ϕ : Ẽ1⊗̄AE
1 → ιB

and

ψ : E1⊗̄BẼ
1 → ιA.

If E is right-full, ϕ is a unitary isomorphism, and if E is left-full, ψ is a unitary
isomorphism.

Proof. We construct ϕ first. For all y, y′ ∈ ObB we define the bimodule map

ϕ : (Ẽ1 ⊗B E
1)(y)(y′) → ιB(y)(y

′) := B(y′, y)

on tensors ẽ⊗ f ∈ Ẽ1(y)(x)⊗ E1(x)(y′) by

ϕ(ẽ⊗ f) := ⟨e, f⟩B.

It is easily verified that this is a bilinear map which is natural with respect to
the actions of A and B, and that it respects the equivalence relation defining
Ẽ1 ⊗B E

2(y)(y′). To show that it extends to an isometry on the completion,
we show it respects the inner product on simple tensors:

⟨ϕ(ẽ⊗ f), ϕ(ẽ′ ⊗ f)⟩B = ⟨e, f⟩∗B⟨e′, f ′⟩B = ⟨f, e⟩B⟨e′, f ′⟩B
= ⟨f, e · ⟨e′, f ′⟩B⟩B = ⟨f,A⟨e, e′⟩ · f ′⟩B = ⟨ẽ⊗ f, ẽ′ ⊗ f ′⟩B.

So ϕ preserves inner products on finite sums of simple tensors, and by Lemma 1.4.4
it extends to an isometric bimodule map on the completed module Ẽ1⊗̄BE

1(y)(y′).
When E is right-full, this map is evidently surjective so by Proposition 3.1.1
it is a unitary equivalence.

The map ψ is defined on simple tensors by ψ(e ⊗ f̃) = A⟨e, f⟩. The proof
that ψ preserves inner products is completely analogous to the above, and
clearly it is surjective (and hence a unitary equivalence) when E is left-full.

We follow with a converse of this lemma, which has the hardest proof in
this chapter.
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Lemma 3.4.3. Let E : A → Hilb-B and F : B → Hilb-A be non-degenerate
right Hilbert bimodules, and suppose that there exist bimodule isomorphisms

ψ : E⊗̄BF → ιA

and

ϕ : F ⊗̄AE → ιB.

Then both E and F are full bimodules, and are faithful functors that surject
onto the compact operators between the modules in their image.

Proof. By symmetry it is enough to prove the stated properties of E. Note that
we can assume that all bimodule isomorphisms are unitary by Lemma 1.1.50.

Note also that ⟨ιB, ιB⟩ = ⟨F ⊗̄AE,F ⊗̄AE⟩ ⊆ ⟨E,E⟩ by definition of the
inner product on F ⊗̄AE, so E is full. Similarly, F is full since ιA is.

To show E is an isometry, note that we have unitary isomorphisms of func-
tors

(−⊗̄BF )⊗̄AE ∼= −⊗̄B(F ⊗̄AE) ∼= −⊗̄AιA ∼= idHilb-A .

Here we have used Lemma 3.1.8 for the first isomorphism, the hypothesis for the
second and Lemma 3.1.9 for the third. We hence conclude that −⊗̄AE must be
faithful, but by Corollary 3.1.10, −⊗̄AE is an extension of E from A to Hilb-A.
So certainly E is faithful, and hence an isometry by Proposition 1.1.34.

The final claim we need to prove is that the image of A(x, x′) under E is
exactly K(E(x), E(x′)). To this end, for every x ∈ ObA, y ∈ ObB we define
the map

δ : F (y)(x) → L(E(x), hy)
δ(f)(e) := ϕ(f ⊗ e)

for each y′ ∈ ObB and e ∈ E(x)(y′). It is clear that δ(f) is bounded by ∥f∥,
and since ϕ is a unitary isomorphism at every y ∈ ObB we see that δ(f) is
adjointable if and only if the map ϕ∗yδ(f) : E(x) → F ⊗̄AE(y) is adjointable,
where we have ϕ∗yδ(f)(e) := f ⊗ e. But ϕ∗yδ(f) has an obvious bounded adjoint
sending f ′ ⊗ e′ to ⟨f, f ′⟩B · e′. So δ has an adjoint δ∗ found by (ϕ∗yδ)

∗ϕy.
Note that if we fix y, not only does the domain of δ have an inner product

⟨−,−⟩F : F (y)(x′)× F (y)(x) → A(x, x′),

but its codomain has an inner product

⟨−,−⟩O : L(E(x′), hy)× L(E(x), hy) → L(E(x), E(x′))

defined by ⟨S, T ⟩O = S∗ ◦ T . We are going to prove the following two claims
about the map δ:

• For each f ∈ F (y)(x), f ′ ∈ F (y)(x′) we have ⟨δ(f ′), δ(f)⟩O = E(⟨f ′, f⟩F ).

• The image of δ at every x ∈ ObA, y ∈ ObB is K(E(x), hy).
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Provided we can prove these claims, the desired result will then roll out as
follows: note that as F is full, the span of

⋃
y∈ObB⟨F (y)(x′), F (y)(x)⟩F is

dense in A(x, x′). Note also by Lemma 2.3.13 that the span of⋃
y∈ObB

⟨K(E(x′), hy),K(E(x), hy)⟩O

is a dense subset of K(E(x), E(x′)) (in the operator norm, which is the one
induced by ⟨−,−⟩O). But E is a faithful C∗-functor so in particular acts by
linear isometries on hom-spaces, it preserves spans and closures, and the two
claims together in fact give E(A(x, x′)) = K(E(x), E(x′)).

To prove the first claim, let f ∈ F (y)(x), f ′ ∈ F (y)(x′), and take elements
e ∈ E(x)(y′), e′ ∈ E(x′)(y′′). Then note that we have

⟨e′, δ(f ′)∗δ(f)(e)⟩ = ⟨δ(f ′)e′, δ(f)(e)⟩
= ⟨ϕ(f ′ ⊗ e′), ϕ(f ⊗ e)⟩
= ⟨f ′ ⊗ e′, f ⊗ e⟩
= ⟨e′, E(⟨f ′, f⟩)(e)⟩.

Hence if we set T = δ(f ′)∗δ(f) − E(⟨f ′, f⟩) we see ⟨e′, T (e)⟩ = 0 for all e, e′,
and setting e′ = T (e) we conclude T = 0, proving the first claim.

To prove the second claim, note that we have for every a ∈ A(x′, x) and
f ∈ F (y)(x) that δ(f · a) = δ(f) ◦ E(a), and for every b ∈ B(y, y′) that
δ(F (b)(f)) = ιB(b) ◦ δ(f). From now on, we will denote all these actions as
simply − · a and b · −, which δ preserves. Now note that

δ(F (y)(x))
(1)
= δ(spany′∈ObB B(y, y′) · F (y′)(x))
(2)
= spany′∈ObB ιB(y

′)(y) ◦ δ(F (y′)(x))
(3)
= spany′∈ObB(ιB(y)(y

′))∗ ◦ δ(F (y′)(x))
(4)
= spany′∈ObB(ϕ(F ⊗̄AE)(y)(y′))∗ ◦ δ(F (y′)(x))
(5)
= spany′∈ObB,x′∈ObA K(E(x′), hy) ◦ δ(F (y′)(x′))∗ ◦ δ(F (y′)(x))
(6)
= spany′∈ObB,x′∈ObA K(E(x′), hy) ◦ E(⟨F (y′)(x′), F (y′)(x)⟩)
(7)
= spanx′∈ObA K(E(x′), hy) ◦ E(A(x′, x))
(8)
= K(E(x)(hy)).

Where we have used the symbol ∗ to take adjoints of sets of operators. We
justify each of these equalities as follows:

1. By non-degeneracy of F .

2. Since E acts isometrically, the first claim we proved shows that δ is a
norm isometry, so it preserves closures, and we also know δ is natural
with respect to the left action of B.

3. Since the involution of operators is an isometry.
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4. By the surjectivity of ϕ.

5. Notice that if ϵe : hy → E(x′) is the compact operator corresponding to
e ∈ E(x′)(y), then by definition of δ, for all f ∈ F (y′)(x′) we have

ϕ(f ⊗ e) = ιB(δ(f)(e)) = δ(f) ◦ ϵe : hy → hy′ ,

since for all b ∈ hy, we have

(δ(f) ◦ ϵe)(b) = ϕ(f ⊗ e · b) = ϕ(f ⊗ e) ◦ b.

Hence ϕ(F ⊗̄AE)(y′)(y) = spanx′∈ObA δ(F (y
′)(x′)) ◦ K(hy, E(x′)), and

applying the involution we deduce this equality.

6. By the first of the two claims.

7. By the fullness of F .

8. By the non-degeneracy of E.

This concludes the proof.

Corollary 3.4.4 (c.f. [Fer23, Proposition 8.1.3]). Let E : A → Hilb-B and
F : B → Hilb-A be non-degenerate right Hilbert bimodules, and suppose there
exist bimodule isomorphisms ψ : E⊗̄BF → ιA and ϕ : F ⊗̄AE → ιB. Then E
and F are imprimitivity bimodules and we in fact have F ∼= Ẽ.

Proof. Notice that at any x ∈ ObA, y ∈ ObB, the map δ in the proof of
Lemma 3.4.3 gives an isometry from F (y)(x) to K(E(x), hy), which is of course
conjugate isomorphic to K(hy, E(x)) ∼= E(x)(y). Hence we see that E is left
small since F lands in small A-modules and vice versa.

The imprimitivity structure is then deduced by Proposition 3.3.19, and the
isomorphism F ∼= Ẽ follows from the above characterization of δ.

Notice that this directly generalizes the case of C∗-algebras, which is ex-
plored in e.g. [RW98, Chapter 3]. We are now ready to summarize the results
of this section into one theorem:

Theorem 3.4.5. Suppose A and B are C∗-categories. A strong∗ unital functor
F : Hilb-A → Hilb-B is an equivalence if and only if its restriction E := F ◦ ιA
is left small, a full bimodule, a faithful functor, and surjects onto the compact
operators between the modules in its image.

Proof. Suppose F is an equivalence. Firstly, the Eilenberg-Watts theorem
guarantees that F ∼= −⊗̄AE. But then by Corollary 3.4.4 we see that E is
an imprimitivity A-B module. So by Proposition 3.3.19, we see that E is an
isometry onto the compacts between modules in its image.

The converse is even simpler; a bimodule with the specified properties is
always an imprimitivity bimodule and by Proposition 3.4.2, we see that −⊗̄AE
is a strong∗ unital unitary equivalence.
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We will hereafter describe such an equivalence F as a Morita equivalence
between A and B.

An interesting corollary to this states that such an equivalence must nec-
essarily preserve compact operators. Recall from Definition 1.4.10 that a
multiplier equivalence between A and B is a pair of non-degenerate functors
F : A → MB and G : B → MA whose lifts F̄ , Ḡ to the respective multiplier
categories give an equivalence.

Corollary 3.4.6. If a unital functor G : Hilb-A → Hilb-B is a strong∗ equiv-
alence, then it restriction G|KHilb-A : KHilb-A → Hilb-B lands in KHilb-B and
gives a multiplier equivalence.

Conversely, any multiplier equivalence Γ : KHilb-A → KHilb-B extends to a
strong∗ unital equivalence G : Hilb-A → Hilb-B.

Proof. For the rightward implication, note that Theorem 3.4.5 tells us that G
is given by tensoring with an A-B bimodule E which acts entirely by compact
operators. So by Corollary 3.1.18 we see that G preserves compact operators.

For the converse, note that the extension Γ̄ : M(KHilb-A) → M(KHilb-B)
provided by Theorem 1.4.5 is necessarily unital and strictly continuous on
bounded subsets. So then by Proposition 2.3.16, Γ̄ is strong∗ and unital.

We are long overdue some examples of Morita equivalences of C∗-categories,
other than the Yoneda bimodules: it follows from Lemma 3.1.9 that these are
self-Morita equivalences. Luckily, the results in this section set us up well to
provide these. Specifically, if we can provide an example of a faithful, left small,
full right Hilbert A-B bimodule whose action consists of all compact operators
between the B-modules in its image, then by Corollary 3.4.4 we know there is a
unital, strong∗, unitary equivalence between Hilb-A and Hilb-B. We will begin
with an example that already played a role in Chapter 1:

Lemma 3.4.7. If A is a C∗-category, there is a Morita equivalence between
A⊕ and A given by tensoring with the right Hilbert A⊕−A bimodule that sends
x1 ⊕ · · · ⊕ xn to hx1 ⊕ · · · ⊕ hxn .

Proof. It follows from Proposition 2.4.11 and Lemma 2.3.9 that there is an
isomorphism

A⊕(x1 ⊕ · · · ⊕ xn, y1 ⊕ · · · ⊕ yk) ∼= K(hx1
⊕ · · · ⊕ hxn

, hy1 ⊕ · · · ⊕ hyk)

which is natural in the objects, so the described assignment is functorial and iso-
metric onto the compact operators. This bimodule is left small by Lemma 3.3.16.
Hence as this bimodule is certainly full, by Theorem 3.4.5 we see the described
functor is a Morita equivalence.

We show next that two unital C∗-categories are Morita equivalent if and
only if they are Morita equivalent as additive categories:
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Proposition 3.4.8. Two unital C∗-categories A, B are Morita equivalent if
and only if there is a unitary equivalence

A♮
⊕
∼= B♮⊕ .

Proof. Recall from Corollary 2.3.10 that for a unital C∗-category A there is an
equivalence between A♮

⊕ (the closure of A under idempotents and direct sums)
and the category fgProj-A of finitely generated projective A-modules.

Suppose A and B are unital and E is an A-B imprimitivity bimodule. Then
E1 : A → Hilb-B is non-degenerate by Lemma 3.3.4, so it must in fact be uni-
tal, but by Lemma 3.3.12 it must also have image in compact operators, so by
Proposition 2.5.8 we see that for each x ∈ ObA, the module E1(x) is finitely
generated and projective. Hence the functor −⊗̄AE

1 sends representable mod-
ules to finitely generated projectives, and hence sends all finitely generated
projectives to finitely generated projectives. We can make a similar argument
on the inverse functor −⊗̄BE

2 and then we obtain by the equivalenceA♮
⊕
∼= B♮⊕.

For the converse assume there is an equivalence F : fgProj-A
∼=−→ fgProj-B:

let E1 be the right Hilbert A-B bimodule given by postcomposing F with the
inclusion fgProj-B ↪−→ Hilb-B and precomposing with the Yoneda embedding
A ↪−→ fgProj-A. Let E2 be the B-A bimodule similarly obtained from the
inverse of F . Then it is evident that E1⊗̄AE

2 ∼= ιA and E2⊗̄BE
1 ∼= ιB.

This means our terminology coincides with that in [DT14], where Morita
equivalence of (unital) C∗-categories was defined by the second criterion above.

Recall from Definition 1.2.5 that Mat-A is the direct limit of the endomor-
phism algebras of non-repeating direct sums in A⊕. Using the results we have
at our disposal it is now very easy to prove using these algebras that many
C∗-categories are Morita equivalent to C∗-algebras.

Proposition 3.4.9 (c.f. [Fer23, Theorem 6.3.1]). If A is a small C∗-category,
there is a Morita equivalence between (Mat-A) and A given by tensoring with
the right Hilbert (Mat-A)-A bimodule

⊕
x∈ObA hx.

More generally, if A is a locally small C∗-category with a small full subcat-
egory B such that every morphism in A is a norm-limit of finite sums of mor-
phisms factoring through some object of B, then there is a Morita equivalence
between (Mat-B) and A given by tensoring with the right Hilbert (Mat-B)-A
bimodule

⊕
x∈ObB hx.

Proof. Note firstly that both bimodules are left small since they have a single-
object C∗-category acting on the left.

For the first case Mat-A ∼=
⊕

x,y∈ObA A(x, y) ∼=
⊕

x,y∈ObA K(hx, hy) (with
the obvious multiplication on the latter two algebras), which by Proposi-
tion 2.4.11 is isomorphic to K(

⊕
x∈ObA hx). The module

⊕
x∈ObA hx is clearly

full, so tensoring with this bimodule gives a Morita equivalence by Theo-
rem 3.4.5.

The second result follows similarly as the requirement on B equates to
asking that

⊕
x∈ObB hx is full.
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These results are a significant generalization of those obtained in [Joa03],
where it was proved that (translated to our terminology) Mat-A and A are
Morita equivalent in the case where A is unital and has a countable set of
objects.





Chapter 4

(Bi)categories of C∗-categories
and C∗-algebras

In this chapter, we use the results in this thesis to prove results on a variety
of categories whose objects are C∗-categories and C∗-algebras. First we use
the Eilenberg-Watts theorem to show the equivalence of several bicategories of
C∗-algebras and C∗-categories. Second, we exhibit a reflective localization of
a category of C∗-categories at the Yoneda embeddings, resulting in a ‘Morita
homotopy category’ of C∗-categories where two C∗-categories are isomorphic
if and only if they are Morita equivalent.

4.1 The bicategories C*-HCat and C*-Bimod

We begin by considering several bicategories. We will assume basic results on
bicategories and refer the reader to [JY21] for a primer.

Our first bicategory has evidently strictly associative and unital composi-
tions, so is in fact a 2-category:

Definition 4.1.1. We let C*-HCat be the 2-category defined as follows:

• Its objects are locally small C∗-categories.

• The 1-morphisms from A to B are strong∗ unital C∗-functors from Hilb-A
to Hilb-B.

• The 2-morphisms are bounded adjointable natural transformations be-
tween these functors.

• C*-HCat has 1- and 2-composition laws are defined in the obvious way.

Our second bicategory is an honest bicategory:

Proposition 4.1.2. There is a bicategory C*-Bimod defined as follows:

• Its objects are locally small C∗-categories.
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• The 1-morphisms from A to B are non-degenerate right Hilbert A-B bi-
modules, and horizontal identities are the Yoneda bimodules.

• The 2-morphisms are bounded adjointable natural transformations.

• Composition of 1-morphisms is given by tensor products of bimodules
(recall from Lemma 3.1.16 that a tensor product where the left bimodule
is non-degenerate is again non-degenerate).

• Composition of 2-morphisms is given by composition of transformations.

• Associators provided by Lemma 3.1.8 and unitors by Lemma 3.1.9.

The equivalences in this bicategory are given by imprimitivity bimodules.

Proof. It is easily verified that the associators satisfy the pentagon identity and
that the unitors satisfy the triangle identity: the proof proceeds exactly as in
[Bro03, Proposition 2.3.1].

The final statement follows directly from Proposition 3.4.2 and Lemma 3.4.3.

This bicategory is analogous to similar ones defined over rings and operator
algebras, see [Bro03].

The results in Chapters 2 and 3 let us show without much effort that these
two bicategories are equivalent:

Theorem 4.1.3. There is a biequivalence Ψ : C*-Bimod → C*-HCat given by:

• The identity on objects.

• Sending every bimodule E : A → Hilb-B to the functor

−⊗̄AE : Hilb-A → Hilb-B.

• Sending a bounded adjointable transformation T : E → E′ of right Hilbert
A-B-bimodules to the bounded adjointable natural transformation

Ψ(T ) : −⊗̄AE → −⊗̄AE
′ whose existence is given by Lemma 3.1.15.

• Natural isomorphisms γ : Ψ(E⊗̄BF )
∼=−→ Ψ(F ) ◦ Ψ(E) given for every

right Hilbert A-module M , A-B bimodule E, and B-C bimodule F sim-
ply by the associator isomorphism M⊗̄A(E⊗̄BF ) ∼= (M⊗̄AE)⊗̄BF from
Lemma 3.1.8.

• Natural isomorphisms I : Ψ(ιA) ∼= idA given for every right Hilbert A-
module M by the unitor isomorphism M⊗̄A(ιA) ∼=M from Lemma 3.1.9.

Proof. It is straightforward to verify that this data satisfies the commutation
diagrams for a pseudofunctor.

To show that Ψ is a biequivalence, we employ the criterion in [JY21, The-
orem 7.4.1], which says Ψ is a biequivalence if and only if it is essentially
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surjective on objects, and gives for any A and B an equivalence of 1-categories
Ψ : C*-Bimod(A,B) → C*-HCat(A,B). The essential surjectivity is immediate.

To show that Ψ : C*-Bimod(A,B) → C*-HCat(A,B) is an equivalence of
1-categories, we show that it is essentially surjective and fully faithful.

For the first claim, suppose F : Hilb-A → Hilb-B is a strong∗ unital functor;
then by Theorem 3.2.4 we know that there is a natural isomorphism of functors
F ∼= −⊗̄A(F ◦ιA), hence F is in the essential image under Ψ of C*-Bimod(A,B).

To show the faithfulness, we note simply that Ψ(T ) : −⊗̄AE → −⊗̄AE
′

whiskers through the inclusion ιA : A → Hilb-A to T : E → E′, so if two
transformations T, T ′ : E → E′ have the same image under Ψ, they must
already be the same, showing Ψ is faithful.

To show fullness, let τ : −⊗̄AE → −⊗̄AE
′ be a bounded adjointable natural

transformation. Let T : E → E′ be the whiskering of τ through ιA. It is clear
by definition that Ψ(T ) and τ agree on representable A-modules, but then by
Lemma 3.2.5 they must agree everywhere. Hence Ψ is full.

This theorem tells us that the 2-category C*-HCat is a model for the strictifi-
cation of the bicategory C*-Bimod. We also record that the Morita equivalences
in Proposition 3.4.9 provide us with further biequivalences.

Proposition 4.1.4. The following bicategories are biequivalent:

• The full sub-bicategory of C*-Bimod whose objects are small C∗-categories.

• The full sub-2-category of C*-HCat whose objects are small C∗-categories.

• The full sub-bicategory of C*-Bimod whose objects are the one-object cat-
egories, i.e. C∗-algebras.

• The full sub-2-category of C*-HCat whose objects are the C∗-algebras.

Proof. The equivalence of the first two bicategories follows from the preceding
theorem: note that Ψ is the identity on objects.

The inclusion of the third into the first category is an equivalence since
by Proposition 3.4.9 it is essentially surjective on objects, as is the inclusion
from the fourth into the second; hence again by [JY21, Theorem 7.4.1] these
inclusions are biequivalences.

Variants of several categories in this proposition were studied in other works:
the third category, often labelled the ‘correspondence bicategory’, was first
defined in [Lan01] and further studied in [BMZ13]. The equivalence between
the first and third bicategory was proven in the [Fer23, Section 7].

We characterize briefly an interesting sub-2-category of C*-HCat that relates
to other works and will become relevant in the next section:

Definition 4.1.5. For any locally small C∗-category A, let Hilbrep-A be the
category of representable right Hilbert A-modules, i.e. the essential image of
the Yoneda embedding ιA : A → Hilb-A.
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Let C*-HCatrep be the subcategory of C*-HCat with the same objects but
whose 1-morphisms are strong∗ unital functors Hilb-A → Hilb-B that preserve
representable modules, i.e. they send Hilbrep-A to Hilbrep-B.

Finally, let C*-Catndg be the 2-category whose objects are locally small
categories, whose 1-morphisms are non-degenerate functors A → MB and
whose 2-morphisms are natural transformations of functors: identities are given
by the embeddings κA : A→MA.

Note that by Corollary 2.4.8, the Yoneda embedding ιA : A→KHilb-A
extends to an equivalence ιA : MA→Hilbrep-A of unital C∗-categories.

Proposition 4.1.6. There is a 2-equivalence Ξ : C*-HCatrep → C*-Catndg given
by

• The identity on objects

• Sending a strict unital functor F : Hilb-A → Hilb-B to the functor

Ξ(F ) := ιB
−1 ◦ F |Hilbrep-A ◦ ιA,

where ιB
−1 is a chosen inverse functor to the ‘multiplier Yoneda embed-

ding’ ιB : MB → Hilbrep-B: this composition is defined since by assump-
tion F |Hilbrep-A lands in Hilbrep-B.

• Sending a natural transformation η : F ⇒ F ′ of functors to the natural
transformation Ξ(η) : ιB

−1 ◦F |Hilbrep-A ◦ ιA ⇒ ιB
−1 ◦F ′|Hilbrep-A ◦ ιA given

by whiskering through the two functors ιA and ιB
−1.

• Natural isomorphisms I : Ξ(idHilb-A)
∼=−→ idA given by the isomorphism

ϵA : ιA ◦ ιA−1 ⇒ κA associated to the chosen inverse ιA
−1.

• Natural isomorphisms γ : Ξ(G ◦ F )
∼=−→ Ξ(G) ◦ Ξ(F ) given for all strong∗

unital F : Hilb-A→Hilb-B and G : Hilb-B→Hilb-C by a whiskering ιC
−1 ◦

G|Hilbrep-B ◦ ϵB ◦ F |Hilbrep-A ◦ ιA where ϵB : ιB ◦ ιB−1 ⇒ κB is the chosen
transformation as in the point above.

Proof. As before it is elementary to show that Ξ is a pseudofunctor, and as it
is the identity on objects, we just need to show that its components

Ξ(A,B) : C*-HCatrep(A,B) → C*-Catndg(A,B)

are equivalences.
As in the proof of Theorem 4.1.3, we obtain faithfulness by Lemma 3.2.5: a

natural transformation of functors on Hilbert module categories is determined
by its values on the representables.

To prove fullness, whisker a natural transformation η : F ⇒ F ′ of functors
A → MB through the inclusion MB→Hilb-B to get a transformation η of
bimodules A → Hilb-B. Then by Lemma 3.1.15 this gives a natural transfor-
mation id ⊗̄Bη of tensor functors Hilb-A → Hilb-B, and one easily sees that
Ξ(id ⊗̄Bη) = η.
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Essential surjectivity follows simply by noting that by Corollary 2.4.9, a
non-degenerate functor A → MB gives a non-degenerate bimodule by post-
composing with the embedding MB → Hilb-B, and tensoring a representable
A-module with this bimodule then gives a representable B-module by Corol-
lary 3.1.10.

Several full subcategories of the bicategory C*-Catndg were studied in [AV20]:
in particular, they prove that the full sub-bicategory of C*-Catndg whose objects
are small C∗-categories containing all countable direct sums, which they call
C∗Lin, is closed under bicolimits.

4.2 Localizing a 1-category of C∗-categories at the
Morita equivalences

In this subsection we construct a category of C∗-categories where Morita equiv-
alences have been inverted, i.e. made into isomorphisms: we will moreover do
this in a universal way, so that the end result constitutes a localization of
1-categories. To be specific, we will invert the Yoneda embeddings, so that
isomorphisms between Hilb-A and Hilb-B give isomorphisms between A and
B. We establish a reflective localization, which gives excellent control over the
hom-spaces of a localization, as done in recent works on C∗-categories and
C∗-algebras such as [Bun23].

Recall first the definition of a localization.

Definition 4.2.1. Let C be a unital category and W be a class of morphisms
in C. The localization of C at W , if it exists, is a category C[W−1] admitting a
functor

Q : C → C[W−1]

such that for all categories D, the precomposition functor

− ◦Q : Fun(C[W−1],D) → Fun(C,D)

is fully faithful and has essential image consisting of those functors F : C → D
that send all morphisms in W to isomorphisms.

Our localizations will be of a special type, namely reflective localizations.
These are localizations which are at once adjoints:

Definition 4.2.2. The localization Q : C → C[W−1] of C at W is called a
reflective localization if it has a fully faithful right adjoint R : C[W−1] → C

Reflective localizations have several convenient equivalent characterizations:

Proposition 4.2.3. Suppose B and C are unital categories and R : B → C is
a functor with a left adjoint Q : C → B. The following are equivalent:

1. R : B → C is a fully faithful functor.
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2. Q : C → B exhibits B as the reflective localization of C at the class of
morphisms which get sent to isomorphisms by Q.

3. Q : C → B exhibits B as the reflective localization of C at the class of
units ηc : c→ RQ(c).

4. The counit ϵ : QR⇒ idB is an isomorphism of functors.

Proof. The equivalence of (1), (2), and (4) is standard, see for example [nLa23b,
Proposition 3.1]. To see how (3) follows from the other statements, we show
that in the presence of statements (1) and (4), the localizations in (2) and (3)
are defined by the same universal property.

Note first that one of the adjunction axioms gives the commutation of the

diagram Q(c) QRQ(c) Q(c)
Q(ηc)

id

ϵQ(c)
so as the right morphism is an iso-

morphism by (4), the left one must be too. Hence if a functor sends all those
morphisms to isomorphisms which are sent to isomorphisms under Q, it must
certainly send all units ηc to isomorphisms.

Suppose conversely that a functor F : C → D sends all units ηc to iso-
morphisms, and let g ∈ C(c, c′) be a morphism sent to an isomorphism by Q.
Note that we can whisker the natural transformation η through F and obtain
a commutative diagram

F (c) F (c′)

FRQ(c) FRQ(c′)

F (g)

F (ηc) F (ηc′ )

FRQ(g)

where the vertical arrows are isomorphisms by hypothesis, and the bottom
arrow is an isomorphism since Q(g) is. Hence F (g) is an isomorphism.

We now apply this theory to the following category of C∗-categories:

Definition 4.2.4. Let

C∗Cat

be the unital category whose objects are (locally small, not necessarily uni-
tal) C∗-categories, and whose morphisms from A to B are natural (unitary)
isomorphism classes of non-degenerate functors A → MB.

This is of course a ‘1-truncation’ of the bicategory C*-Catndg from the pre-
vious subsection.

Definition 4.2.5. Let

KHilb- : C∗Cat → C∗Cat
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be the endofunctor that sends every C∗-category to its C∗-category of Hilbert
modules and compact operators, and sends every non-degenerate functor F :
A → MB to the tensor product with the non-degenerate bimodule given by
composing with the Yoneda embedding ιB : MB → Hilb-B. Let

HMod

be the full subcategory of C∗Cat with objects those in the image of KHilb-.

Proposition 4.2.6. The functor KHilb- is left adjoint to the inclusion functor

incl : HMod → C∗Cat.

Proof. We need to show that for any two C∗-categories A ∈ ObC∗Cat and
B ∈ ObHMod, there is a natural isomorphism of hom-sets

C∗Cat(A,B) ∼= C∗Cat(KHilb-A,B).

Since B is in the image of KHilb- we can write B = KHilb-C. But then the
first hom-space refers to non-degenerate A-C bimodules and the second corre-
sponds to strong∗ unital functors from KHilb-A to KHilb-C, and these are in
correspondence by the Eilenberg-Watts theorem. This correspondence is easily
seen to be natural in both A and C.

We hence derive the main result of this subsection:

Theorem 4.2.7. The functor KHilb- is the (reflective) localization of the cat-
egory C∗Cat at the class of Yoneda inclusions ιA, as well as at the class of
non-degenerate functors A → MB inducing Morita equivalence.

Proof. The functor incl from Proposition 4.2.6 is clearly full and faithful, so the
adjunction satisfies statement 1 in Proposition 4.2.3. The Yoneda bimodules
ιA give the identity on KHilb-A upon tensoring, so give us the units of the
adjunction. Hence statement 3 tells us that KHilb- is the localization at the
class of Yoneda embeddings. Statement 2 gives us the final part of the theorem.

Hence, HMod is the first model for the Morita homotopy theory of C∗-
categories, akin to similar results on dg-categories ([Toë07][Tab05]), unital C∗-
categories ([DT14]), and (∞, 1)-categories ([CG19]). This construction may
well be of interest in noncommutative geometry since invariants such as KK-
theory have long been modelled as functors from a category of C∗-algebras that
invert Morita equivalences.

We also derive easily the idempotence of the functor KHilb-, which can
alternatively be deduced from Corollary 3.3.18.

Proposition 4.2.8. For any locally small C∗-category A, the map

ιKHilb-A : KHilb-A → KHilb-(KHilb-A)

is an isomorphism.
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Proof. We prove that in the set-up of Proposition 4.2.3, for all b ∈ ObB the
unit ηR(b) : R(b) → RQR(b) is an isomorphism.

Note that one of the adjunction axioms states that the diagram

R(b) RQR(b) R(b)
ηR(b)

id

R(ϵb)

commutes. But by statement 3 we know ϵb is an isomorphism. So R(ϵb) must
be an isomorphism, and hence ηR(b) is also an isomorphism.

Now note that in the setting of Proposition 4.2.6, ιKHilb-A is exactly the
morphism ηR(b) for b = A.

It follows that C∗-categories which are equivalent to one of the formKHilb-A
for some locally small C∗-category A are exactly those C∗-categories whose
Yoneda embedding is an equivalence. This gives us a partial answer to the
questions raised about ‘pre-completeness’ in [Hen15].



Appendix A

The non-degenerate tensor-hom
adjunction

joint work with Benjamin Dünzinger

In this appendix we prove a tensor-hom adjunction for non-degenerate func-
tors of C∗-categories.

As this will involve iterated functor categories, we assume in this appendix
that all categories are small, although this assumption is not strictly necessary
if one pays sufficient care to size issues.

Recall from Proposition 1.1.46 that for any two small C∗-categories B and
C there is a small C∗-category Fun(B, C) of C∗-functors. The objects of these
functor categories are, of course, given by (not necessarily unital) C∗-functors.
The morphisms are uniformly bounded natural transformations and the invo-
lution is given pointwise. We begin by defining a few variants of the functor
category that will come in handy, some of which we saw already in Chapter 1.

Definition A.1. If A and B are unital C∗-categories we denote by

Funu(A,B)

the C∗-category of unital C∗-functors from A to B. For any two C∗-categories
A and B we denote by

Funstrict(MA,MB)

the full subcategory of Funu(MA,MB) spanned by those functors which are
strictly continuous on norm-bounded subsets. We denote by

Funndg(A,MB)

the subcategory of Fun(A,MB) spanned by the non-degenerate functors. Fi-
nally we denote by

Funndg,prop(A,MB)

101
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the subcategory of Funndg(A,MB) whose objects are the non-degenerate func-
tors landing in the ideal B ⊆ MB, though still with transformations in MB.

Recall from Proposition 1.4.12 that if κ = κA : A→MA is the standard
embedding, then the precomposition functor

− ◦ κ : Funstrict(MA,MB)→Funndg(A,MB)

is an isomorphism of C∗-categories.
Dell’Ambrogio defines the maximal tensor product A⊗max B of two unital

C∗-categories A and B ([Del12, Section 3.2]) and proves a tensor-hom adjunc-
tion

Funu(A⊗max B, C) ∼= Funu(A,Funu(B, C)).

In [BEL23], the maximal tensor product of non-unital C∗-categories is defined.
Upon inspection one realizes it is unlikely that for all non-unital C∗-categories
we have

Fun(A⊗max B, C) ∼= Fun(A,Fun(B, C))

since such an isomorphism usually works through a ‘currying’ procedure that
uses the units in A to determine a functor from B to C for each object in A.

In this appendix, we combine the results in Section 1.4 of this thesis with
Dell’Ambrogio’s tensor-hom adjunction to obtain a ‘non-degenerate tensor-hom
adjunction’. More precisely, we will obtain an isomorphism between

Funndg(A⊗max B,MC)

and a subcategory of Fun(A,Funndg(B,MC)).
We briefly recapitulate the work of Bunke on maximal tensor products of

non-unital C∗-categories. We begin by defining the maximal norm, which can
in fact be defined on any complex linear ∗-category:

Definition A.2. If A is a complex linear ∗-category, the maximal norm on A
is the seminorm given by

∥f∥max := sup
ρ:A→B

∥ρ(f)∥

where we vary over all ∗-functors ρ : A → B, where B is a C∗-algebra.

It is shown in [Bun19, Remark 2.15] that a small complex linear ∗-category is
a C∗-category if and only if the maximal norm is positive-definite and complete
(note that the smallness assumption can easily be dropped by allowing B to
live in an enlargement of the enriching category of A). The following lemma
immediately follows:

Lemma A.3. If A is a complex linear ∗-category, the normed complex linear
∗-category Compl(A) obtained by quotienting out elements with zero maximal
norm and completing is a C∗-category.
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We can now define the maximal tensor product, which will form a comple-
tion of the following complex linear ∗-category.

Definition A.4. If A and B are C∗-categories, then the algebraic tensor prod-
uct of A and B, also labelled A⊙B, is the complex linear ∗-category with
objects ObA×ObB and hom-spaces

A⊙B((x, y), (x′, y′)) := A(x, x′)⊗C B(y, y′).

The composition and involution is defined in the obvious way.

Definition A.5. If A and B are C∗-categories, the maximal tensor product of
A and B is the C∗-category

A⊗max B := Compl(A⊙B).

It turns out that there are no elements with maximal norm zero in A⊙B:

Lemma A.6 ([BEL23, Lemma 7.3]). If A and B are C∗-categories, then for
any morphism c in A⊙B we have ∥c∥max = 0 only if c = 0.

Hence there is a faithful functor A⊙B → A⊗max B.
It is possible to tensor together two approximate units and get another one:

Lemma A.7. If (uλ)λ∈Λ and (vµ)µ∈M are approximate units for the C∗-
algebras A(x, x) and B(y, y), then the net (uλ⊗vµ)(λ,µ)∈Λ×M is an approximate
unit for (A⊗max B)((x, y), (x, y)).

Proof. We define two commuting, uniformly bounded nets Uλ, Vµ of multipliers
in M(A⊗max B)((x, y)(x, y)) on simple tensors by

Uλ(a⊗ b) = (uλa⊗ b) and (a⊗ b)Uλ = (auλ ⊗ b),

and similarly for Vµ. Note that UλVµ = κ(uλ ⊗ vµ). Note also that since
∥a ⊗ b∥max ≤ ∥a∥∥b∥, the tensor product is continuous in each variable and
hence both nets Uλ and Vµ converge strictly to the identity. But then by
Lemma 1.1.45 we see that their product UλVµ = κ(uλ ⊗ vµ) converges strictly
to the identity, and by Lemma 1.1.19 it is positive, meaning it is an approximate
unit.

The maximal tensor product has the following universal property:

Lemma A.8. If A,B, and C are C∗-categories and F : A⊙B → C is a linear
∗-functor, F extends to a C∗-functor

F : A⊗max B → C

Proof. This is [BEL23, Definition 7.2]: the statement that this characterization
is equivalent to Definition A.5 is in the proof of [BEL23, Proposition 7.5].
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We easily deduce that the maximal tensor product is functorial in both
arguments.

Corollary A.9. For any two C∗-functors F : A → A′, G : B → B′, there is a
C∗-functor

F ⊗G : A⊗max B → A′ ⊗max B′

given on simple tensors by (F ⊗G)(a⊗ b) = F (a)⊗G(b).

Proof. Simply extend the obvious linear ∗-functor F ⊙G : A⊙B→A′ ⊗max B′.

One such tensored functor is of interest here:

Definition A.10. For two non-unital C∗-categories A,B we denote by

JA,B : A⊗max B → MA⊗max MB

the C∗-functor given by tensoring the two inclusions κA : A → MA and
κB : B → MB. We denote by

IA,B : MA⊗max MB → M(A⊗max B)

the C∗-functor extending the obvious functor MA⊙MB→M(A⊗max B).

Lemma A.11. We have

IA,B ◦ JA,B = κA⊗max B.

Furthermore, the functor JA,B is faithful.

Proof. For any a ∈ A(x, x′), b ∈ B(y, y′) we clearly have

IA,B ◦ JA,B(a⊗ b) = κA⊗max B(a⊗ b).

But then we see that IA,B ◦ JA,B = κA⊗max B on the subspace

(A⊙B)((x, y), (x′, y′)) ⊆ (A⊗max B)((x, y), (x′, y′))

and as this subspace is by definition norm-dense, we see IA,B◦JA,B = κA⊗max B
everywhere. It follows immediately that JA,B is faithful since κA⊗max B is.

We caution that the functor IA,B is not necessarily faithful: already in the
algebra case this fails, see the comments in [KLQ21, p.19].

We now have the tools to prove our promised tensor-hom adjunction for
non-degenerate functors. We recall again Dell’Ambrogio’s result:

Proposition A.12 ([Del12, Lemma 3.1.4]). For all unital C∗-categories A,B, C
there is a trinatural bijection between the objects of the C∗-categories

ϕ : Funu(A⊗max B, C)
∼=−→ Funu(A,Funu(B, C)).
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We describe explicitly ϕ and its inverse. For a functor F : A⊗max B → C,
the map of ϕ(F ) on objects is simply obtained by currying that of F . For an
object x ∈ ObA we obtain ϕ(F )(x) : B → C by the action of F on morphisms of
the form idx⊗b ∈ A⊗max B((x, y), (x, y′)) and similarly we obtain the action of
A by natural transformations of functors using morphisms of the form a⊗ idy.

Conversely, for a functor G : A→Fun(B, C), the functor ϕ−1(G) is obtained
on objects by un-currying and on simple tensors of morphisms

a⊗ b ∈ A⊗max B((x, y), (x′, y′))

by
ϕ−1(G)(a⊗ b) := G(a)y ◦G(x)(b) = G(y)(b) ◦G(a)y′ ,

where the second equality holds since G(a) is a natural transformation.
Strictly speaking, Dell’Ambrogio only proves an isomorphism between the

objects of these two functor C∗-categories. It is easy to promote this to an
isomorphism of C∗-categories, however:

Lemma A.13. For any two unital C∗-functors F, F ′ : A⊗max B→C there
is a bijection between the spaces of natural transformations Nat(F, F ′) and
Nat(ϕ(F ), ϕ(F ′)).

Proof. A transformation η : F ⇒ F ′ is given by a C-morphism

η(x,y) : F (x, y)→F ′(x, y)

for each (x, y) ∈ ObA×ObB satisfying naturality under all morphisms in
A⊗max B. Now for ϕ(F ), ϕ(F ′) : A→Funu(B, C) as above, define the transfor-
mation ϕ(η) : ϕ(F ) ⇒ ϕ(F ′) to have components ϕ(η)x : ϕ(F )(x) ⇒ ϕ(F ′)(x)
where

(ϕ(η)x)y := η(x,y) : ϕ(F )(x)(y) ⇒ ϕ(F ′)(x)(y)

for all x ∈ ObA, y ∈ ObB. Naturality under both A and B is clearly implied
by considering morphisms of the form (id⊗b) and (a⊗ id). It is clear that ϕ is
injective since ϕ(η) consists of the same array of maps as η, and it is surjective
since naturality under A⊗max B is equivalent to naturality under morphisms
of the form (id⊗b) or (a⊗ id).

Hence in particular for all non-unital C∗-categories there is a unitary equiv-
alence

Funu(MA⊗max MB,MC) ∼= Funu(MA,Funu(MB,MC)).

We now describe the subcategories of these two C∗-categories that we would
like to identify:

Definition A.14. We say that a unital C∗-functor F : MA⊗max MB → MC
is strict when the composition

A⊗max B
JA,B−−−→ MA⊗max MB F−→ MC
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is non-degenerate. We denote by Funstrict(MA⊗max MB,MC) the full sub-
category of Funu(MA⊗max MB,MC) spanned by these functors.

Proposition A.15. The functor

Funstrict(MA⊗max MB,MC) −◦JA,B−−−−−→ Funndg(A⊗max B,MC)

is an isomorphism.

Proof. Write κ for the canonical functor κA⊗max B : A⊗max B → M(A⊗max B)
and recall that precomposition with κ induces an isomorphism

(− ◦ κ) : Funstrict(M(A⊗max B),MC) → Funndg(A⊗max B,MC),

where the former denotes those functors from M(A⊗max B) to MC which are
strictly continuous on unit balls. Let Ψ be the inverse of the above isomorphism.
We claim that

(− ◦ IA,B) ◦Ψ : Funndg(A⊗max B,MC) → Funstrict(MA⊗max MB,MC)

is an inverse of − ◦ JA,B. The equality

(− ◦ JA,B) ◦ (− ◦ IA,B) ◦Ψ = idFunndg(A⊗max B,MC)

is true since by Lemma A.11 we have − ◦ κ = − ◦ IA,BJA,B.

For the other direction, take a strict functor F : MA⊗max MB → MC,
and consider the diagram

M(A⊗max B)

A⊗max B MA⊗max MB MC

Ψ(FJA,B)

JA,B

κ
IA,B

F

observing that commutation of the right-hand triangle is equivalent to the
equation F = (− ◦ IA,B)Ψ(− ◦ JA,B)(F ), giving the other inverse equation.
Note also that the right-hand triangle commutes on the image of JA,B by the
other inverse condition.

To show that the right triangle commutes on all morphisms inMA⊗max MB,
it suffices to check that

F (T ⊗ T ′) = Ψ(FJA,B)IA,B(T ⊗ T ′)

for T a morphism in MA and T ′ a morphism in MB, since sums of such
simple tensors are norm-dense in MA⊗max MB. Let (uλ) be an approximate
unit of the domain of T and (vµ) be an approximate unit of the domain of T ′.
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Recall from Lemma A.7 that (uλ ⊗ vµ) is an approximate unit for the domain
of T ⊗ T ′. Since FJA,B is non-degenerate, we know that

F (T ⊗ T ′) = limλ,µ F (T ⊗ T ′) ◦ FJA,B(uλ ⊗ vµ)
= limλ,µ FJA,B(T (uλ)⊗ T ′(vµ))
= limλ,µΨ(FJA,B)(κ(T (uλ)⊗ T ′(vµ)))
= limλ,µΨ(FJA,B)(IA,B(T ⊗ T ′) ◦ κ(uλ ⊗ vµ))
= limλ,µΨ(FJA,B)(IA,B(T ⊗ T ′)) ◦Ψ(FJA,B)(κ(uλ ⊗ vµ))
= Ψ(FJA,B)(IA,B(T ⊗ T ′))

Where the final equality follows from the strict continuity of Ψ(FJA,B).

We move on to describe the relevant objects in Funu(MA,Funu(MB,MC))
that correspond to those in the above category.

Definition A.16. For all C∗-categories B and C, the objectwise strict topology
on Funu(MB,MC) is defined as follows: for F,G ∈ ObFunu(MB,MC), a net
of natural transformations

(Tλ) = {Tλx : F (x)→G(x) : x ∈ ObB λ ∈ Λ}

converges objectwise strictly1 to the natural transformation T : F ⇒ G if for
each x ∈ ObB, the net Tλx of multipliers in M C(F (x), G(x)) converges strictly
to Tx.

We also have an objectwise strict topology on Funndg(B,MC) since by
Proposition 1.4.12 it is isomorphic to a subcategory of Funu(MB,MC).

Note that the objectwise strict topology is not the topology relative to any
obvious class of natural transformations, as far as we can see.

Definition A.17. For any three C∗-categories A,B and C, we denote by

Funstrict(MA,Funu(MB,MC))

the subcategory of Funu(MA,Funu(MB,MC)) spanned by those functors
which are continuous on unit balls when one gives MA the strict topology
and Funu(MB,MC) the objectwise strict topology. We denote by

Funstrict(A,Funu(MB,MC))

the subcategory of Fun(A,Funu(MB,MC)) spanned by those functors satisfy-
ing the same continuity requirement.

Lemma A.18. If κA : A→M A is the standard inclusion functor, then the
precomposition functor

(− ◦ κA) : Funstrict(MA,Funu(MB,MC)) → Funstrict(A,Funu(MB,MC))

is an isomorphism.

1This is a legitimate definition for a topology since it is given by a family of seminorms
{T 7→ ∥Tx(a)∥} where x varies over objects of B and a varies over morphisms with domain
F (x).
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Proof. Since A is strictly dense in MA (Lemma 1.3.8) we immediately see the
functor (− ◦ κA) is injective on objects.

Now take a strict functor F : A → Fun(MB,MC). To show (− ◦ κA) is
surjective on objects, we must show that every such F lifts to a strict functor
F : MA → Funu(MB,MC). To do this, note that for any given y ∈ ObB there
is a functor Fy : A → MC given for each x ∈ ObA by Fy(x) = F (x)(y) and for
each a ∈ A(x, x′) by Fy(a) = F (a)x. Each functor Fy is non-degenerate by the
strict continuity requirement so extends to a unital functor Fy : MA → MC
which is strictly continuous on bounded subsets. As in the proof of Proposi-
tion 1.4.12, for any T ∈ MA(x, x′) the assemblage {Fy(T )} defines a natural
transformation from F (x) to F (x′), since we can strictly approximate it by a
net of natural transformations {Fy(Tuλ)} where uλ is an approximate unit for
A(x, x).

Hence we can lift F to a unital functor F : MA → Funu(MB,MC), which
is strictly continuous on bounded subsets since every component Fy is.

The proof that (− ◦ κA) is fully faithful proceeds exactly as in Proposi-
tion 1.4.12.

We now show that the two forms of ‘double strictness’ we’ve defined corre-
spond to each other under the unital tensor-hom adjunction.

Lemma A.19. A unital C∗-functor

F : MA⊗max MB → MC

is strict if and only if its image under currying

ϕ(F ) : MA → Fun(MB,MC)

both lands in Funstrict(MB,MC) and is strict in the sense defined in Defini-
tion A.17.

Proof. Suppose ϕ(F ) satisfies the requirements above, and take any x ∈ ObA
and y ∈ ObB. Let (uλ) be an approximate unit for A(x, x) and (vµ) be
an approximate unit for B(y, y). Then since ϕ(F ) lands in non-degenerate

functors we can deduce that F (id⊗vµ)
µ−→ id strictly in MC(F (x)(y), F (x)(y)).

Furthermore since ϕ(F ) is strict as defined in Definition A.17 we deduce that

F (uλ⊗ id)
λ−→ id strictly in MC(F (x)(y), F (x)(y)). But then by Lemma 1.1.45

we have that

F (uλ ⊗ vµ) = F (id⊗vµ)F (uλ ⊗ id)
λ,µ−−→ idF (x,y)

strictly.
But then as (uλ ⊗ vµ) is an approximate unit for (A⊗max B)((x, y)(x, y))

by Lemma A.7, we easily see that F ◦ JA,B is non-degenerate: note that in
Theorem 1.4.5 it is enough for criterion 3 to hold of just one approximate unit
in each endomorphism algebra since this implies criterion 1.



109

Suppose conversely that F is strict. Then by Proposition A.15 we know
F factors as F = F ◦ IA,B, where F = Ψ(F ◦ JA,B) : M(A⊗max B)→MC is
unital and strictly continuous on unit balls and IA,B and JA,B are the canon-
ical functors defined in Definition A.10. Then since the net IA,B(id⊗vµ) con-
verges strictly to the identity in (MA⊗max MB)((x, y), (x, y)), the elements
FIA,B(id⊗vµ) converge strictly to the identity in MC(F (x)(y), F (x)(y)), and
hence we see that ϕ(F )(x) : B→MC is a non-degenerate functor for each x.

We prove finally that ϕ(F ) is strict in the sense defined in Definition A.17.
Take a norm-bounded net (Tλ) of multipliers in MA(x, x′) converging strictly
to 0. Then certainly the net (IA,B(Tλ ⊗ id)) in M(A⊗max B)((x, y), (x′, y)
is also norm-bounded and strictly converging to zero, and hence we have

FIA,B(Tλ ⊗ id)
λ−→ 0 strictly. But then we see the net (ϕ(F )(Tλ)) in the

space MC(ϕ(F )(x)(y), ϕ(F )(x′)(y)) converges strictly to zero for all y ∈ ObB,
proving our claim.

We can now prove the non-degenerate tensor-hom adjunction.

Proposition A.20. If A, B, and C are C∗-categories, there is a tensor-hom
equivalence

Funndg(A⊗max B,MC) ∼= Funstrict(A,Funndg(B,MC)).

Proof. Combining Lemma A.19 with the unital tensor-hom adjunction we ob-
tain an isomorphism of C∗-categories

Funstrict(MA⊗max MB,MC) ∼= Funstrict(MA,Funstrict(MB,MC)).

The left category is isomorphic to Funndg(A⊗max B,MC) by Proposition A.15
The right category is isomorphic to Funstrict(A,Funndg(B,MB)) by Proposi-
tion 1.4.12 and Lemma A.18.

Corollary A.21. If A, B, and C are C∗-categories where A is unital, there is
a tensor-hom adjunction

Funndg(A⊗max B,MC) ∼= Funu(A, Funndg(B,MC))

which is natural in A, B, and C.

Proof. As noted before, the strict topology on a unital C∗-category is sim-
ply the norm topology, and since C∗-functors are norm-decreasing and norm
convergence in Funndg(B,MC) certainly implies objectwise strict convergence,
Proposition A.20 specializes to the above.

We end by specializing the non-degenerate tensor-hom adjunction to the
proper case, recalling that a functor to MC is labelled proper if it lands in
C ⊆ MC.
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Proposition A.0.1. If A is a unital C∗-category, then a non-degenerate C∗-
functor

F : A⊗max B → MC

is proper if and only if its image

ϕ(F ) : A → Fun(B,MC)

under the isomorphism in Proposition A.20 lands in Funndg,prop(B,MC).

Proof. If F is proper, then certainly we have F (id⊗b) ∈ C for all simple tensors
id⊗b ∈ A⊗max B((x, y), (x, y′)). Hence we see ϕ(F )(x) is proper for all objects
x ∈ ObA.

On the other hand, if ϕ(F )(x) : B→MC is proper for all x ∈ ObA, then
for all a⊗ b ∈ A⊗max B((x, y), (x′, y′)) we have

F (a⊗ b) = ϕ(F )(a)y ◦ ϕ(F )(x)(b) ∈ C

as ϕ(F )(x)(b) ∈ C and C is an ideal in MC. It follows that F is proper.

Corollary A.22. If A is a unital C∗-category, then for all C∗-categories B
and C there is an isomorphism of functor categories

Funndg,prop(A⊗max B, C) ∼= Funu(A,Funndg,prop(B, C)).
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