SERRE DUALITY AND GEOMETRIC MORPHISMS

IVO DELL'AMBROGIO

ABSTRACT. For a rigidly-compactly generated tensor triangulated category, a k-linear structure over a field k is the same as to give a geometric morphism from the derived category of k. Moreover, if this is the case, the subcategory of rigid-compact objects enjoys Serre duality precisely when the geometric morphism is Gorenstein, in the sense that its dualising object is invertible.

[This note should be seen as a complement to Section 6 of [BDS16], in particular Proposition 7 offers a converse of Corollary 6.12 of *loc. cit.*]

Let k be a field. A *Serre functor* on a k-linear triangulated category $\mathfrak C$ is a k-linear equivalence $S\colon \mathfrak C\xrightarrow{\sim} \mathfrak C$ together with a natural isomorphism $\sigma_{x,y}\colon \mathfrak C(x,y)^*\cong \mathfrak C(y,Sx)$ for all objects $x,y\in \mathfrak C$, where $(-)^*$ denotes the k-linear dual; see [BK89] and [BO01]. By the Yoneda lemma, if such a pair (S,σ) exists then it is uniquely determined up to a unique isomorphism, so its existence is really a property of the category and we may want to say that $\mathfrak C$ has Serre duality.

If \mathcal{C} happens to also be endowed with a tensor product $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$, then it is natural to ask whether the Serre functor is given by a twist, *i.e.* if it is given by tensoring with a tensor-invertible object of \mathcal{C} . We claim that this is necessarily the case, and we begin by proving this general fact.

1. **Lemma.** Let C be k-linear tensor category with Serre duality (S, σ) . Let $F: C \to C$ be any k-linear functor admitting a two-sided adjoint G. Then S and F commute up to an isomorphism, $S \circ F \cong F \circ S$, which is natural in F.

Proof. (We learned this argument from Bernhard Keller.) Just compute as follows

$$\mathcal{C}(x, S(Fy)) \cong \mathcal{C}(Fy, x)^*$$
 by Serre duality
 $\cong \mathcal{C}(y, Gx)^*$ by $F \dashv G$
 $\cong \mathcal{C}(Gx, Sy)$ by Serre duality
 $\cong \mathcal{C}(x, F(Sy))$ by $G \dashv F$

and conclude with the Yoneda lemma.

By taking $F := x \otimes -$ in the lemma and applying the functors to the tensor unit object, we obtain the above claim:

2. Corollary. Let C be a rigid k-linear tensor category with tensor unit 1. If C has Serre duality, the Serre functor S must be given by the twist $S \cong (-) \otimes S(1)$. \square

Date: August 10, 2019.

²⁰¹⁰ Mathematics Subject Classification. 18E30; 14F05, 55U35.

Key words and phrases. Serre functor, symmetric monoidal category, triangulated category. Author partially supported by the Labex CEMPI (ANR-11-LABX-0007-01) and ANR ChroK (ANR-16-CE40-0003).

Incidentally, another special case of the lemma is the following well-known property of Serre functors:

- 3. Corollary. Let C be a k-linear category with Serre duality (S, σ) . Then the Serre functor commutes, up to isomorphism, with every self-equivalence of C.
- 4. Remark. In general not all (exact) self-equivalences of a tensor-triangulated category arise as twists. In algebraic geometry, numerous examples (with Serre duality) occur as bounded derived categories of smooth varieties ([Muk81] [Orl02] [ST01]).

From now on, we focus our attention to the case of *rigidly-compactly generated* tensor triangulated categories in the sense of [BDS16, Def. 2.7] (a.k.a. unital algebraic stable homotopy categories in the sense of [HPS97]). The question now is whether the tensor subcategory of rigid-compact objects has Serre duality.

The next lemma links k-linear structures with the theory of [BDS16]:

- 5. **Lemma.** Let 𝒯 be a rigidly-compactly generated tensor-triangulated category in the sense of [BDS16] (a.k.a. a unital algebraic stable homotopy category in the sense of [HPS97]). Then the following two structures on 𝒯 are equivalent:
- (a) a k-linear structure, i.e. an enrichment of $\mathfrak T$ over k-modules (as in [Kel05]), compatible with the triangulation in the sense that the suspension functor Σ is k-linear: $\Sigma(\lambda \cdot \alpha) = \lambda \cdot \Sigma(\alpha)$ for all morphisms α of $\mathfrak T$ and all $\lambda \in k$.
- (b) a tensor-product preserving (= symmetric monoidal) and coproduct-preserving exact functor $f^* \colon D(\mathbb{k}) \to \mathfrak{T}$ (a.k.a. a geometric functor in the sense of [HPS97]), where $D(\mathbb{k})$ denotes the unbounded derived category of \mathbb{k} .

Proof. Assume \mathfrak{T} is \mathbb{k} -linear. The cohomology functor H^* yields a \mathbb{k} -linear tensor equivalence of $D(\mathbb{k})$ with the category of \mathbb{Z} -graded \mathbb{k} -vector spaces and degree-preserving \mathbb{k} -linear maps. Exploiting this equivalence, we can easily extend the assignment $\mathbb{1}_{D(\mathbb{k})} = \mathbb{k}[0] \mapsto \mathbb{1}_{\mathfrak{T}}$, in an essentially unique way, to a coproduct-preserving, shift-preserving and \mathbb{k} -linear functor $f^*\colon D(\mathbb{k}) \to \mathfrak{T}$. Being additive and commuting with the suspensions, this functor is readily seen to be exact and symmetric monoidal.

Conversely, such a functor f^* : $\mathbb{D}(\mathbb{k}) \to \mathcal{T}$ satisfies the basic hypotheses of [BDS16]; in particular it admits a right adjoint f_* (by Brown representability) and the tensor structure of \mathcal{T} admits an internal Hom functor $\mathsf{hom}_{\mathcal{T}}(-,-)$ (by the hypotheses on \mathcal{T}). As in [BDS16, Rem. 6.8], it is straightforward to check that $\underline{\mathcal{T}}(x,y) := f_* \mathsf{hom}_{\mathcal{T}}(x,y)$ extends (by exploiting the tensor-Hom and (f^*,f_*) adjunctions) to an enrichment of \mathcal{T} over the tensor category $\mathbb{D}(\mathbb{k})$. By applying the 0th cohomology functor H^0 , we then obtain an enrichment of \mathcal{T} in \mathbb{k} -modules.

6. Remark. Alternatively for (b) \Rightarrow (a) in Lemma 5, note that f^* : D(\mathbb{k}) $\to \mathfrak{T}$ restricts to a ring map $\mathbb{k} = \operatorname{End}_{\mathbb{D}(\mathbb{k})}(\mathbb{k}) \to \operatorname{End}_{\mathfrak{T}}(\mathbb{1})$ which can be combined with the standard action of the target on \mathfrak{T} coming from the tensor structure.

* * *

The tensor-exact functor $f^* \colon D(\mathbb{k}) \to \mathfrak{T}$ satisfies the basic hypotheses of [BDS16, Hyp. 1.2]. It follows that f^* has a right adjoint f_* (as already mentioned) which itself has a right adjoint $f^{(1)} \colon D(\mathbb{k}) \to \mathfrak{T}$ (see [BDS16, Cor. 2.14]). We recall that in this situation the relative dualizing object $\omega_f := f^{(1)}(\mathbb{k}[0])$ is of particular interest.

- 7. **Proposition.** Let \mathfrak{T} be a \mathbb{k} -linear rigidly-compactly generated category, with associated geometric functor $f^* \colon D(k) \to \mathfrak{T}$ as in Lemma 5. Then the following are equivalent:
- (a) The subcategory of rigid-compact objects $C := T^c$ has Serre duality.
- (b) The relative dualizing object ω_f is tensor-invertible.

Moreover in this case $S(1) \cong \omega_f$, i.e. the Serre functor is given by $S \cong (-) \otimes \omega_f$.

- 8. Remark. The proposition provides a source of *invertible* relative dualizing objects ω_f , even in the absence of Grothendieck-Neeman duality (this is what may be called the 'fourth case' of the Trichotomy Theorem [BDS16, Cor. 1.13]).
- 9. Remark. The functor f^* constructed in Lemma 5 may look trivial, but its adjoint f_* , and the further right adjoint $f^{(1)}$, typically are anything but. In algebraic geometry, for instance, f_* specializes to sheaf cohomology and $f^{(1)}$ to the exceptional pullback functor whose computation motivates much of Grothendieck duality theory (see [BDS16, Ex. 3.22 and 6.14]).

Proof of Proposition 7. Let us write $\omega_{\Bbbk} := \omega_f$ for the dualising object of the functor $f^* \colon D(\Bbbk) \to \mathfrak{T}$, as we are thinking in terms of the \Bbbk -enrichment. For such a functor f^* the 'relative Serre duality theorem' [BDS16, Thm. 6.9] always gives us an isomorphism

(10)
$$\mathsf{hom}_{\mathrm{D}(\Bbbk)}(\underline{\mathfrak{I}}(x,y), \Bbbk[0]) \xrightarrow{\sim} \underline{\mathfrak{I}}(y, x \otimes \omega_{\Bbbk})$$

natural in $x \in \mathcal{T}^c$ and $y \in \mathcal{T}$, where as above $\underline{\mathcal{T}}$ denotes the D(\mathbb{k})-enrichment of \mathcal{T} and hom the internal Hom. (In general, however, $\omega_{\mathbb{k}}$ is not necessarily invertible.) By applying H^0 to (10), we deduce a natural isomorphism

(11)
$$\mathfrak{I}(x,y)^* \xrightarrow{\sim} \mathfrak{I}(y,x \otimes \omega_{\mathbb{k}})$$

of &-vector spaces. Clearly if $\omega_{\&}$ is tensor-invertible then $S := (-) \otimes \omega_{\&} : \Im^c \to \Im^c$ is a Serre functor by (11). Hence (b) implies (a).

Conversely, assuming now that $\mathcal{C} = \mathcal{T}^c$ has Serre duality (S, σ) . We claim that the twisting object S(1) is our $\omega_{\mathbb{K}}$ (cf. Lemma 2). For $x, y \in \mathcal{T}^c$ we obtain a composite natural isomorphism

(12)
$$\mathfrak{T}(y, S(x)) = \mathfrak{T}^{c}(y, S(x)) \stackrel{\sigma}{\cong} \mathfrak{T}^{c}(x, y)^{\star} \stackrel{\text{(11)}}{\cong} \mathfrak{T}(y, x \otimes \omega_{\mathbb{k}})$$

and therefore by setting x := 1 a natural isomorphism

(13)
$$\phi_y \colon \mathfrak{T}(y, S(1)) \xrightarrow{\sim} \mathfrak{T}(y, \omega_k)$$

for all $y \in \mathcal{T}^c$. (We could be tempted to apply the Yoneda lemma at this point, but it would be premature as we still don't know whether $\omega_{\mathbb{k}}$ belongs to \mathcal{T}^c !) In particular, by choosing $y := S(\mathbb{1}) \in \mathcal{T}^c$ in (13) we find in \mathcal{T} a morphism $\alpha := \phi_{S(\mathbb{1})}(\mathrm{id}_{S(\mathbb{1})}) : S(\mathbb{1}) \to \omega_{\mathbb{k}}$. Consider now the induced natural transformation

$$\alpha_* : \mathfrak{T}(-, S(1)) \longrightarrow \mathfrak{T}(-, \omega_{\mathbb{k}})$$

of cohomological functors $\mathfrak{I}^{\mathrm{op}} \to \mathrm{Mod}(\mathbb{k})$. By naturality, for every map $\beta \colon y \to S(\mathbb{1})$ with y compact we have a commutative square

$$\begin{array}{ccc}
\mathfrak{T}(S(\mathbb{1}),S(\mathbb{1})) & \xrightarrow{\phi_{S(\mathbb{1})}} & \mathfrak{T}(S(\mathbb{1}),\omega_{\mathbb{k}}) \\
& \beta^* \downarrow & & \downarrow \beta^* \\
\mathfrak{T}(y,S(\mathbb{1})) & \xrightarrow{\varphi_y} & \mathfrak{T}(y,\omega_{\mathbb{k}})
\end{array}$$

showing that $\phi_y(\beta) = \phi_y(\beta^*(\mathrm{id})) = \beta^*(\alpha) = \alpha_*(\beta)$. Thus the restriction of α_* on \mathfrak{T}^c coincides with ϕ , and in particular it is an isomorphism. As \mathfrak{T} is compactly generated this implies that α_* is an isomorphism on all \mathfrak{T} , hence by Yoneda the map α is invertible. It follows that the dualizing object $\omega_{\mathbb{K}} \cong S(\mathbb{1})$ is compact. But then, the isomorphism (12) takes place inside \mathfrak{T}^c , hence by Yoneda it defines a natural isomorphism $(-) \otimes \omega_{\mathbb{K}} \cong S$ of functors $\mathfrak{T}^c \to \mathfrak{T}^c$.

For the true skeptic, let us still verify that $\omega_{\mathbb{k}}$ is tensor-invertible: as $(-) \otimes \omega_{\mathbb{k}}$ is an equivalence $\mathfrak{T}^c \xrightarrow{\sim} \mathfrak{T}^c$ it has a pseudo-inverse S^{-1} , from which it follows that $S^{-1}(\mathbb{1}) \otimes \omega_{\mathbb{k}} \cong S(S^{-1}(\mathbb{1})) \cong \mathbb{1}$. Thus (b) implies (a).

This concludes the proof of Proposition 7.

References

- [BDS16] Paul Balmer, Ivo Dell'Ambrogio, and Beren Sanders. Grothendieck-Neeman duality and the Wirthmüller isomorphism. *Compos. Math.*, 152(8):1740–1776, 2016.
- [BK89] A. I. Bondal and M. M. Kapranov. Representable functors, Serre functors, and reconstructions. Izv. Akad. Nauk SSSR Ser. Mat., 53(6):1183–1205, 1337, 1989.
- [BO01] Alexei Bondal and Dmitri Orlov. Reconstruction of a variety from the derived category and groups of autoequivalences. Compositio Math., 125(3):327–344, 2001.
- [HPS97] Mark Hovey, John H. Palmieri, and Neil P. Strickland. Axiomatic stable homotopy theory. Mem. Amer. Math. Soc., 128(610), 1997.
- [Kel05] G. M. Kelly. Basic concepts of enriched category theory. Repr. Theory Appl. Categ., (10):vi+137, 2005. Reprint of the 1982 original [Cambridge Univ. Press].
- [Muk81] Shigeru Mukai. Duality between D(X) and $D(\hat{X})$ with its application to Picard sheaves. Nagoya Math. J., 81:153–175, 1981.
- [Orl02] D. O. Orlov. Derived categories of coherent sheaves on abelian varieties and equivalences between them. Izv. Ross. Akad. Nauk Ser. Mat., 66(3):131–158, 2002.
- [ST01] Paul Seidel and Richard Thomas. Braid group actions on derived categories of coherent sheaves. Duke Math. J., 108(1):37–108, 2001.

UNIV. LILLE, CNRS, UMR 8524 - LABORATOIRE PAUL PAINLEVÉ, F-59000 LILLE, FRANCE *E-mail address*: ivo.dell-ambrogio@univ-lille.fr *URL*: http://math.univ-lille1.fr/~dellambr