
SERRE DUALITY AND GEOMETRIC MORPHISMS

IVO DELL’AMBROGIO

Abstract. For a rigidly-compactly generated tensor triangulated category, a

k-linear structure over a field k is the same as to give a geometric morphism

from the derived category of k. Moreover, if this is the case, the subcategory
of rigid-compact objects enjoys Serre duality precisely when the geometric

morphism is Gorenstein, in the sense that its dualising object is invertible.

[This note should be seen as a complement to Section 6 of [BDS16], in particular
Proposition 7 offers a converse of Corollary 6.12 of loc. cit.]

Let k be a field. A Serre functor on a k-linear triangulated category C is a k-
linear equivalence S : C

∼−→ C together with a natural isomorphism σx,y : C(x, y)? ∼=
C(y, Sx) for all objects x, y ∈ C, where (−)? denotes the k-linear dual; see [BK89]
and [BO01]. By the Yoneda lemma, if such a pair (S, σ) exists then it is uniquely
determined up to a unique isomorphism, so its existence is really a property of the
category and we may want to say that C has Serre duality.

If C happens to also be endowed with a tensor product ⊗ : C × C → C, then it
is natural to ask whether the Serre functor is given by a twist, i.e. if it is given by
tensoring with a tensor-invertible object of C. We claim that this is necessarily the
case, and we begin by proving this general fact.

1. Lemma. Let C be k-linear tensor category with Serre duality (S, σ). Let F : C→
C be any k-linear functor admitting a two-sided adjoint G. Then S and F commute
up to an isomorphism, S ◦ F ∼= F ◦ S, which is natural in F .

Proof. (We learned this argument from Bernhard Keller.) Just compute as follows

C(x, S(Fy)) ∼= C(Fy, x)? by Serre duality

∼= C(y,Gx)? by F a G
∼= C(Gx, Sy) by Serre duality

∼= C(x, F (Sy)) by G a F

and conclude with the Yoneda lemma. �

By taking F := x⊗− in the lemma and applying the functors to the tensor unit
object, we obtain the above claim:

2. Corollary. Let C be a rigid k-linear tensor category with tensor unit 1. If C has
Serre duality, the Serre functor S must be given by the twist S ∼= (−)⊗ S(1). �
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Incidentally, another special case of the lemma is the following well-known prop-
erty of Serre functors:

3. Corollary. Let C be a k-linear category with Serre duality (S, σ). Then the Serre
functor commutes, up to isomorphism, with every self-equivalence of C. �

4. Remark. In general not all (exact) self-equivalences of a tensor-triangulated cate-
gory arise as twists. In algebraic geometry, numerous examples (with Serre duality)
occur as bounded derived categories of smooth varieties ([Muk81] [Orl02] [ST01]).

From now on, we focus our attention to the case of rigidly-compactly generated
tensor triangulated categories in the sense of [BDS16, Def. 2.7] (a.k.a. unital alge-
braic stable homotopy categories in the sense of [HPS97]). The question now is
whether the tensor subcategory of rigid-compact objects has Serre duality.

The next lemma links k-linear structures with the theory of [BDS16]:

5. Lemma. Let T be a rigidly-compactly generated tensor-triangulated category in
the sense of [BDS16] (a.k.a. a unital algebraic stable homotopy category in the sense
of [HPS97]). Then the following two structures on T are equivalent:

(a) a k-linear structure, i.e. an enrichment of T over k-modules (as in [Kel05]),
compatible with the triangulation in the sense that the suspension functor Σ is
k-linear: Σ(λ · α) = λ · Σ(α) for all morphisms α of T and all λ ∈ k.

(b) a tensor-product preserving (= symmetric monoidal) and coproduct-preserving
exact functor f∗ : D(k)→ T (a.k.a. a geometric functor in the sense of [HPS97]),
where D(k) denotes the unbounded derived category of k.

Proof. Assume T is k-linear. The cohomology functor H∗ yields a k-linear tensor
equivalence of D(k) with the category of Z-graded k-vector spaces and degree-
preserving k-linear maps. Exploiting this equivalence, we can easily extend the
assignment 1D(k) = k[0] 7→ 1T, in an essentially unique way, to a coproduct-
preserving, shift-preserving and k-linear functor f∗ : D(k) → T. Being additive
and commuting with the suspensions, this functor is readily seen to be exact and
symmetric monoidal.

Conversely, such a functor f∗ : D(k) → T satisfies the basic hypotheses of
[BDS16]; in particular it admits a right adjoint f∗ (by Brown representability)
and the tensor structure of T admits an internal Hom functor homT(−,−) (by
the hyptheses on T). As in [BDS16, Rem. 6.8], it is straightforward to check that
T(x, y) := f∗homT(x, y) extends (by exploiting the tensor-Hom and (f∗, f∗) adjunc-
tions) to an enrichment of T over the tensor category D(k). By applying the 0th
cohomology functor H0, we then obtain an enrichment of T in k-modules. �

6. Remark. Alternatively for (b)⇒(a) in Lemma 5, note that f∗ : D(k)→ T restricts
to a ring map k = EndD(k)(k)→ EndT(1) which can be combined with the standard
action of the target on T coming from the tensor structure.

∗ ∗ ∗
The tensor-exact functor f∗ : D(k)→ T satisfies the basic hypotheses of [BDS16,

Hyp. 1.2]. It follows that f∗ has a right adjoint f∗ (as already mentioned) which
itself has a right adjoint f (1) : D(k)→ T (see [BDS16, Cor. 2.14]). We recall that in
this situation the relative dualizing object ωf := f (1)(k[0]) is of particular interest.
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7. Proposition. Let T be a k-linear rigidly-compactly generated category, with
associated geometric functor f∗ : D(k)→ T as in Lemma 5. Then the following are
equivalent:

(a) The subcategory of rigid-compact objects C := Tc has Serre duality.
(b) The relative dualizing object ωf is tensor-invertible.

Moreover in this case S(1) ∼= ωf , i.e. the Serre functor is given by S ∼= (−)⊗ ωf .

8. Remark. The proposition provides a source of invertible relative dualizing ob-
jects ωf , even in the absence of Grothendieck-Neeman duality (this is what may be
called the ‘fourth case’ of the Trichotomy Theorem [BDS16, Cor. 1.13]).

9. Remark. The functor f∗ constructed in Lemma 5 may look trivial, but its adjoint
f∗, and the further right adjoint f (1), typically are anything but. In algebraic
geometry, for instance, f∗ specializes to sheaf cohomology and f (1) to the exceptional
pullback functor whose computation motivates much of Grothendieck duality theory
(see [BDS16, Ex. 3.22 and 6.14]).

Proof of Proposition 7. Let us write ωk := ωf for the dualising object of the func-
tor f∗ : D(k) → T, as we are thinking in terms of the k-enrichment. For such a
functor f∗ the ‘relative Serre duality theorem’ [BDS16, Thm. 6.9] always gives us
an isomorphism

(10) homD(k)(T(x, y),k[0])
∼−→ T(y, x⊗ ωk)

natural in x ∈ Tc and y ∈ T, where as above T denotes the D(k)-enrichment of T
and hom the internal Hom. (In general, however, ωk is not necessarily invertible.)

By applying H0 to (10), we deduce a natural isomorphism

(11) T(x, y)?
∼−→ T(y, x⊗ ωk)

of k-vector spaces. Clearly if ωk is tensor-invertible then S := (−) ⊗ ωk : Tc → Tc

is a Serre functor by (11). Hence (b) implies (a).
Conversely, assuming now that C = Tc has Serre duality (S, σ). We claim that

the twisting object S(1) is our ωk (cf. Lemma 2). For x, y ∈ Tc we obtain a
composite natural isomorphism

(12) T(y, S(x)) = Tc(y, S(x))
σ∼= Tc(x, y)?

(11)∼= T(y, x⊗ ωk)

and therefore by setting x := 1 a natural isomorphism

(13) φy : T(y, S(1))
∼−→ T(y, ωk)

for all y ∈ Tc. (We could be tempted to apply the Yoneda lemma at this point,
but it would be premature as we still don’t know whether ωk belongs to Tc!) In
particular, by choosing y := S(1) ∈ Tc in (13) we find in T a morphism α :=
φS(1)(idS(1)) : S(1)→ ωk. Consider now the induced natural transformation

α∗ : T(−, S(1)) −→ T(−, ωk)
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of cohomological functors Top → Mod(k). By naturality, for every map β : y → S(1)
with y compact we have a commutative square

T(S(1), S(1))

β∗

��

φS(1)

'
// T(S(1), ωk)

β∗

��
T(y, S(1))

φy

'
// T(y, ωk)

showing that φy(β) = φy(β∗(id)) = β∗(α) = α∗(β). Thus the restriction of α∗ on
Tc coincides with φ, and in particular it is an isomorphism. As T is compactly
generated this implies that α∗ is an isomorphism on all T, hence by Yoneda the
map α is invertible. It follows that the dualizing object ωk ∼= S(1) is compact.
But then, the isomorphism (12) takes place inside Tc, hence by Yoneda it defines a
natural isomorphism (−)⊗ ωk ∼= S of functors Tc → Tc.

For the true skeptic, let us still verify that ωk is tensor-invertible: as (−) ⊗ ωk
is an equivalence Tc

∼−→ Tc it has a pseudo-inverse S−1, from which it follows that
S−1(1)⊗ ωk ∼= S(S−1(1)) ∼= 1. Thus (b) implies (a).

This concludes the proof of Proposition 7. �
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