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1 Introduction

Our goal is to prove the following theorem:

Theorem 1.1. The Spanier-Whitehead category SW (HoM,Σ) of the homotopy
category of a pointed model category M obtained by inverting its suspension
endofunctor Σ is always a (classical) triangulated category.

We derive the triangulation on SW (HoM,Σ) in a natural way from the
collection of cofiber sequences in HoM (see Def. (6.3)). In order to prove the
theorem, we shall first isolate a small set of properties (denoted (H0),...,(H6),
see Section 3) of the homotopy category HoM which suffice to prove Theorem
(1.1) in conditional form. That is, given a category H and a functor Σ : H → H
satisfying conditions (H0)-(H6), we shall prove that SW (H,Σ) is triangu-
lated (Thm. (6.5)).

This we do in Part I. In Part II we shall refer to the literature, basically
just Daniel Quillen’s seminal work on model categories Homotopical algebra [4]
and Mark Hovey’s hi-tech monography Model categories [2], in order to prove
that the model category of an arbitrary pointed model category does indeed
satisfy our conditions (H0)-(H6). As recalled at the beginning of Section 8,
the assumption that the model category be pointed can always be satisfied by
a very easy construction; thus the above theorem provides a simple way of
deriving a triangulated category out of any model category. For this second
part we need some of the rather technical language of model category theory,
so we have provided a section (Section 7) in which we recall the basic notions
that will be needed. This section is really a sorry excuse for an introduction
to algebraic homotopy theory: the neophyte is warmly encouraged to read the
introductory paper by Dwyer and Spalinski [1].

The reader who wants to know how triangulated categories and model cate-
gories arose is invited to read the enlightening and pleasant historical paper [7]
by Charles A. Weibel.

Ringraziamenti. Desidero ringraziare i miei genitori e mia zia Romilda
Dell’Ambrogio per avermi sempre sostenuto durante questi cinque anni di studio;
ringrazio Paolo Venzi per aver saputo accendere in me la scintilla matematica;
e Vanessa, per tante altre scintille.
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Part I

General formalism

2 (Co)groups and (co)actions in a category

In this section we make some preliminary definitions which shall be needed later.
The confident reader may surely skip this section and come back if need should
arise.

Definition 2.1. Let C be a category with finite products and a final object 1.
A group object (or simply group) in C is a quadruple (G,m, e, i) consisting of an
object G and three morphisms

m : G×G −→ G (the multiplication)

e : 1 −→ G (the unit)

i : G −→ G (the inverse)

such that the three diagrams below commute.

G× (G×G) '

1×m
��

(G×G)×G
m×1 // G×G

m

��
G×G

m // G

1×G

'
$$JJJJJJJJJJ

e×1 // G×G

m

��

G× 1

'
zztttttttttt

1×eoo

G

G
(1,i) //

!

��

G×G

m

��
1

e // G

These are the associativity axiom, the unit axiom and the inverse axiom re-
spectively (writing them down as equations gives the usual group axioms). The
three isomorphisms in the diagrams are the canonical ones. One should note
here that the unit e and the inverse i of a group are completely determined by
the axioms, once the multiplication m is known (this is incidentally proved in
Remark (3.1)); it is perhaps better though to give them explicitly. The same
remark holds for cogroups, defined below.

A group is commutative or abelian if this diagram also commutes:

G×G

m
%%JJJJJJJJJJ

T // G×G

m

��
G

where T is the “interchange map” with p1T = p2 and p2T = p1, and p1, p2 being
the canonical maps of the product G × G. Choosing C = Set, these definition
is equivalent to the usual definition of an (abelian) group; the same is also true
for the definition of morphism of groups and for the definition of action below.
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A morphism of groups is a map f : G → G′ between groups (G,m, e, i),
(G′,m′, e′, i′) which respects the structure maps, i.e., such that the three dia-
grams below commute.

G×G

f×f
��

m // G

f

��
G×G′

m′
// G′

1

e′ ��@
@@

@@
@@

@
e // G

f

��
G′

G

f

��

i // G

f

��
G′

i′ // G′

One should note here that the commutativity of the second and third diagrams
follows from that of the first one. But, again, we allow some redundancy in our
definitions.

Definition 2.2. Given a group object G = (G,m, e, i) and some other object
X in C, a (right) action of G on X is a map ν : X × G → X such that this
diagram commutes:

(X ×G)×G '

ν×1

��

X × (G×G)
1×m // X ×G

ν

��

X × 1

'
zzuuuuuuuuuu

1×eoo

X ×G
ν // X

(As equations, the commuting square on the left and the triangle on the right
are recognizable as the usual axioms for the action of a group.)

In a category C with finite coproducts and an initial object 0, one has the
following dual definitions.

Definition 2.3. A cogroup object (or simply cogroup) in C is a quadruple
(A,m, e, i) with m : A → A ∨ A, e : A → 0 and i : A → A making the
following diagrams commute.

A ∨ (A ∨A) ' (A ∨A) ∨A A ∨Am∨1oo

A ∨A

1∨m

OO

A
moo

m

OO

0 ∨A A ∨Ae∨1oo 1∨e // A ∨ 0

A

m

OO

'

ddJJJJJJJJJJ '

::uuuuuuuuuu

A A ∨A
(1,i)oo

0

!

OO

A
eoo

m

OO (1)

A morphism of cogroups (A,m, e, i), (A′,m′, e′, i′) is then a map f : A → A′

such that the following three diagrams commute.

A
m //

f

��

A ∨A
f∨f
��

A′
m′
// A′ ∨A′

A

f

��

e // 0

A′
e′

??��������

A

f

��

i // A

f

��
A′

i′ // A′
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Definition 2.4. Given a functor F : C → C, we shall say that FX is a natural
cogroup object if

(i) for all objects X the object FX is a cogroup object, and

(ii) for all maps f : X → Y the map Ff is a morphism of cogroups.

One then has the obvious dual definition of a natural group object.

Definition 2.5. A (right) coaction of the cogroup object (A,m, e, i) on X is a
map ν : A→ X ∨A such that

(X ∨A) ∨A ' X ∨ (A ∨A) X ∨A1∨moo 1∨e // X ∨ 0

X ∨A

ν∨1

OO

X
νoo

ν

OO

'

::uuuuuuuuuu

(2)

commutes.
We shall also need the following definition. Given a coaction ν : X → X ∨A

of the cogroup (A,m, e, i) on X, a coaction ν′ : X ′ → X ′ ∨ A′ of (A′,m′, e′, i′)
on X, and a morphism of cogroups f : A→ A′, one defines a map x : X → X ′

to be f-equivariant if the square below commutes. There is obviously also a
dual definition for actions.

X

x

��

ν // X ∨A
x∨f
��

X ′ ν′ // X ′ ∨A′

Equivalently, one can look at all the above-defined concepts also on another
“plane”, as the following proposition suggests.

Proposition 2.6. Let C have finite products. Let G, X and A be objects of C.
Then one has the following bijections.

(i) The group structures (G,m, e, i) on G in C are in one-to-one correspon-
dence to the group structures (C(−, G),m, e, i) on C(−, G) in the functor
category SetC

op

.

(ii) The actions ν : X×G→ X of the group (G,m, e, i) on X in C are in one-
to-one correspondence with the actions ν : C(−, X) × C(−, G) → C(−, X)
in SetC

op

of the group (C(−, G),m, e, i) on C(−, X) in SetC
op

.

If C is a category with finite coproducts, the dual statements are true:

(iii) The cogroup structures (A,m, e, i) on A in C are in one-to-one correspon-
dence to the group (!) structures (C(A,−),m, e, i) on C(A,−) in SetC.

(iv) The coactions ν : X → X∨A of the cogroup (A,m, e, i) in C are in one-to-
one correspondence with the actions (!) ν : C(X,−)× C(A,−) → C(X,−)
of the group (!) (C(A,−),m, e, i) in SetC.

Furthermore, a group or a cogroup is abelian if and only if its “brother” in the
functor category is so. Also the concept of equivariance can be shifted between
“planes”.
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Proof: The proof is an exercise application of the Yoneda lemma, see [3]
Prop. 1 p. 75 for a statement and partial proof of (i). Instead of a detailed
proof, we give the bijections that will concern us most, namely those in (iii)
and (iv). Given a cogroup (A,m, e, i) in C, the comultiplication m : A→ A∨A
determines a unique natural transformation

m : C(A,−)× C(A,−) ' // C(A ∨A,−) m∗
// C(A,−)

where the natural isomorphism on the left is the one given by the definition of
the coproduct A∨A, and m∗ = C(m,−) is precomposition with m. On the other
hand, by the Yoneda lemma, for any natural transformation µ : C(A ∨A,−) →
C(A,−) there is a unique m : A → A ∨ A such that µ = m∗. Similarly, i and
e correspond to the natural maps i = i∗ : C(A,−) → C(A,−) and e = e∗ :
C(0,−) → C(A,−) (Notice that the functor C(0,−) is final in SetC as required,
because for all Y the set C(0, Y ) contains exactly one element). Then one checks
that (C(A,−),m, e, i) makes the diagrams for a group commute in SetC if and
only if (A,m, e, i) makes the diagrams for a cogroup commute in C. A coaction
ν : A→ X ∨A gives rise to the action

ν : C(X,−)× C(A,−) ' // C(X ∨A,−) ν∗ // C(X,−) .

Remark 2.7. It is easy to check that the two following statements are equivalent:
(a) (C(A,−),m, e, i), as above, is a group in SetC .
(b) For each X ∈ ObC, the set C(C,X) is a group in the usual sense, and for each
f : X → Y in C, f∗ = C(A, f) (composition with f) is a group homomorphism.

Therefore, instead of saying that (C(A,−),m, e, i) is a group in SetC , one
can equivalently say that the functor C(A,−) : C → Set takes values into the
category Grp of (usual) groups and homomorphisms (or that it lifts to Grp along
the forgetful functor Grp → Set). A similar remark applies to groups C(−, G)
in SetC

op

.

3 The set of assumptions

Let (H,Σ) be a pair consisting of a category H and a functor Σ : H → H,
which we shall call suspension. This choice of notation, of course, wants to
be reminiscent of the Homotopy category of a pointed model category and its
suspension Σ. In this section we carefully isolate all the properties that (H,Σ)
must enjoy, in order for SW (H,Σ) to be a triangulated category (Thm. (6.5)).

(H0) (a) H admits finite coproducts and is a pointed category. Denote the
zero object (the final and initial object) by ∗. As usual one defines
the zero maps 0 : X → ∗ → Y for all objects X,Y . Moreover, Σ
preserves the coproducts and the zero object.

(b) ΣnX is a natural cogroup object for all n ≥ 1, abelian as soon as
n ≥ 2. (See Def. (2.4).)

(c) Σ preserves the structure maps of all cogroups ΣX (that is, the three
structure maps of the cogroup Σ2X are the images under Σ of the
structure maps of ΣX).
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(d) There is a collection of diagrams inH called cofiber sequences. Cofiber
sequences must satisfy the following seven conditions.

(H1) Cofiber sequences are in particular diagrams of the form

A
f // B

g // C C
ν // C ∨ ΣA (3)

where ν is a right coaction of the cogroup ΣA on C. To every cofiber
sequence there belongs a boundary map ∂, which is defined to be the
following composition:

∂ : C
ν // C ∨ ΣA

(0,1) // ΣA .

Define a morphism of cofiber sequences to be a commuting diagram as the
one below. Call it an isomorphism if the vertical arrows are all isomor-
phisms.

A
f //

a

��

B
g //

b

��

C

c

��

C

c

��

ν // C ∨ ΣA

c∨Σa

��
A′

f ′ // B′
g′ // C ′ C ′

ν′ // C ′ ∨ ΣA′

The meaning of requiring the square on the right to commute is that we
want the third map c to be Σa-equivariant. (Note that Σa is a morphism
of cogroups, because of (H0)(b), cf. Def. (2.4).)

(H2) For any object X, the diagram ∗ //X
1X //X is a cofiber sequence,

with the only possible coaction X → X ∨ Σ∗. (Condition (H0)(a) says
that Σ∗ = ∗, and then it is easy to see that the only possible such coaction
is the canonical isomorphism.)

(H3) Every map f : A→ B is part of some cofiber sequence (3).

(H4) Cofiber sequences can be shifted to the right. More precisely, given a
cofiber sequence (3), the following diagram is also a cofiber sequence:

B
g // C

∂ // ΣA ΣA
νf // ΣA ∨ ΣB

where ∂ is the boundary map of (3) and the coaction νf is given by the
composition

νf : ΣA
m // ΣA ∨ ΣA

1∨(i◦Σf) // ΣA ∨ ΣB

(here m is the comultiplication of the cogroup ΣA and i is the coinverse
of the cogroup ΣB).

(H5) “Fill-in maps exist”. That is, given a commutative (solid) diagram

A

a

��

f // B

b

��

g // C

c

��

C

c

��

ν // C ∨ ΣA

c∨Σa

��
A′

f ′ // B′
g′ // C ′ C ′

ν′
// C ′ ∨ ΣA′

(4)
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where the two rows are cofiber sequences, there exists a (nonunique) map
c : C → C ′ which completes the above diagram to a morphism of cofiber
sequences (In other words, c is such that cg = g′b and it is Σa-equivariant).

(H6) Given a composition of maps h := g ◦ f : X
f //Y

g //Z , there exist
cofiber sequences containing f , g and h

X
f // Y

f ′ // U U // U ∨ ΣX

Y
g // Z

g′ // W W
νg // W ∨ ΣY

X
h // Z

h′ // V V // V ∨ ΣX

and also a cofiber sequence

U
s // V

s′ // W W
νs // W ∨ ΣU

which enjoy the following good properties. The coaction νs is the com-
posite

νs : W
νg // W ∨ ΣY

1∨Σf ′ // W ∨ ΣU .

Moreover s is Σ1X -equivariant, s′ is Σf -equivariant and

s′h′ = g′, h′g = sf ′.

Remark 3.1. In the presence of (H0)(a,b), condition (H0)(c) is equivalent to
the following.

(H0)(c’) For all n ≥ 1 and objects X,Y , the map of sets Σ : H(ΣnX,ΣnY ) →
H(Σn+1X,Σn+1Y ) is a group homomorphism.

Proof: Write A := ΣnX and B := ΣnY . In the light of Proposition (2.6) and
Remark (2.7), the comultiplications mΣA : ΣA→ ΣA∨ΣA and mΣ2A : Σ2A→
Σ2A∨Σ2A provided by (H0)(b) give rise to (usual) group operations mΣA and
mΣ2A, depicted as the two rows in the following diagram.

H(ΣA,B)×H(ΣA,B)

Σ×Σ

��

' // H(ΣA ∨ ΣA,B)

Σ

��

(mΣA)∗ // H(ΣA,B)

Σ

��
H(Σ2A,ΣB)×H(Σ2A,ΣB) ' // H(Σ2A ∨ Σ2A,ΣB)

(mΣ2A)∗// H(Σ2A,ΣB)

The square on the left commutes because Σ preserves coproducts by (b). If
(c) holds, Σ(mΣA) = mΣ2A and the right square commutes also (because Σ is
a functor), and the commutativity of the outer square is (c’). Conversely, if
(c’) holds the outer square commutes for all B, which implies that the right
square commutes, i.e. for all B and f ∈ H(ΣA∨ΣA,B) we have Σ(f ◦mΣA) =
Σf ◦ mΣ2A, hence by choosing B = ΣA ∨ ΣA and f = 1ΣA∨ΣA we obtain
Σ(mΣA) = mΣ2A. Then to prove that Σ preserves also the counit and coinvers
maps of the cogroups ΣX, it suffices to notice that these are always uniquely
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determined by the comultiplication. In fact, given a cogroup (G,m, e, i), this
corresponds to a usual groupH(G,B) natural in B with inverse and unit natural
maps i, e. It is trivial to show that the inverse and unit of a usual group are
determined by the operation, hence for all B the morphisms i and e are uniquely
determined, hence they are also as natural transformations. The Yoneda Lemma
shows the unicity of the maps i and e by which they were induced.

Remark 3.2. In (H5), the fact that c is Σa-equivariant (i.e. that in (4) the
square on the right commutes) implies immediately that the following square
commutes:

C

c

��

∂ // ΣA

Σa

��
C ′

∂′ // ΣA′

4 Inverting an endofunctor

We now want to define and study the category obtained from H by formally
inverting the suspension Σ. This construction though is so simple that it applies
to any category equipped with any endofunctor. Accordingly, throughout this
section we shall investigate the Spanier-Whitehead category in its full generality.

4.1 The Spanier-Whitehead category

Definition 4.1. Let C be any category equipped with an endofunctor Σ : C −→
C. The Spanier-Whitehead category SW = SW (C,Σ) (obtained by inverting Σ)
consists of the following data.

• The objects of SW are pairs (X, i), where X is an object of C and i ∈ Z
is an integer.

• Given two objects (X, i) and (Y, j), their hom set SW ((X, i), (Y, j)) is
defined by the following colimit (of sets):

colim
n ≥ −i,−j

(
. . .

Σ→ C(Σn+iX,Σn+jY ) Σ→ C(Σn+1+iX,Σn+1+jY ) Σ→ . . .

)

That is, a morphism α : (X, i) −→ (Y, j) is an equivalence class [n, f ] of
some map f : Σn+iX −→ Σn+jY in C for some n ≥ −i,−j, with respect
to the equivalence relation generated by:

(n, f) ∼ (n+ l,Σlf), for all l ≥ 0.

Thus, (n, f) ∼ (m, g) if and only if there is a (big enough) N such that
ΣN−nf = ΣN−mg.

• Given two composable arrows α : (X, i) −→ (Y, j) and β : (Y, j) −→
(Z, k), where α = [n, f ] and β = [m, g], define their composition to be
β ◦ α := [n+m,Σng ◦ Σmf ].
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• For every object (X, i) in SW, define its identity map to be 1(X,i) :=
[−i, 1X ].

One checks easily that these data define a category.
There is a canonical functor ι : C −→ SW (C,Σ) which comes with the

category and is defined by ι(X) := (X, 0) and ι(f) := [0, f ]. We can also
recover Σ in the new category as

Σ′ : SW (C,Σ) −→ SW (C,Σ)

Σ′(X, i) := (X, i+ 1), Σ′[n, f ] := [n,Σf ] = [n− 1, f ] .

This functor is an automorphism of SW (C,Σ) having the obvious inverse

Σ′−1(X, i) = (X, i− 1), Σ′−1[n, f ] = [n+ 1, f ] .

Since 1ΣX ∈ C(ΣX,ΣX) = C(Σ0+1X,Σ0+0ΣX), the identity map 1ΣX repre-
sents also the class of an isomorphism [0, 1ΣX ] in SW from (X, 1) to (ΣX, 0).
Because the diagram below trivially commutes for all f : X → Y in C, this is a
natural isomorphism [0, 1ΣX ] : Σ′ ◦ ι ' ι ◦ Σ.

(X, 1)

[0,1ΣX ]

��

[0,Σf ] // (Y, 1)

[0,1ΣY ]

��
(ΣX, 0)

[0,Σf ] // (ΣY, 0)

In the following, especially in the calculations of Section 6, we will often
write (and think) Σι = ιΣ for the above isomorphism Σ′ι ' ιΣ. In particular,
we will drop the ′ and denote the new functor Σ′ also by Σ.

Of course, the canonical functor ι is in general not an equivalence, nor is it in
general full, faithful or essentially surjective. Notice though that it is“essentially
essentially surjective”, that is to say, every object of SW is isomorphic to the
canonical image ιX of some X in C, but only up to some iteration of Σ or Σ−1.

On many occasions we shall want to study a given commutative diagram in
SW by tracing it back to some commutative diagram in C. This can be done
by applying Σ enough times. For example, if we have a commutative diagram

(X, i)
[l,h] //

[n,f ] ##G
GG

GG
GG

GG
(Z, k)

(Y, j)
[m,g]

;;wwwwwwwww

in SW , then for N ≥ n,m, l (which by definition (4.1) implies also N ≥
−i,−j,−k) we get the following diagram in C:

ΣN+iX
ΣN−lh //

ΣN−nf %%KKKKKKKKKK ΣN+kZ

ΣN+jY

ΣN−mg

99ssssssssss
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If we take an even bigger N , then this diagram commutes. (The existence of this
bigger N means exactly that the equation [m, g][n, f ] = [l, h] holds.) Clearly,
this same operation is possible with any finite diagram in SW .

The Spanier-Whitehead category is characterized up to isomorphism by the
following universal property. An immediate consequence of this is that whenever
Σ : C → C is already invertible, then SW (C,Σ) and C are isomorphic categories.

Proposition 4.2 (Universal property of (SW (C,Σ), ι,Σ′)).

(i) Σ′ : SW → SW is an isomorphism, and there is a natural isomorphism
Σ′ι ' ιΣ.

(ii) For any such triple (T , τ, S), i.e. a category T and functors

C τ // T S // T

such that S is an isomorphism and such that there is a natural isomor-
phism Sτ ' τΣ, there is a unique functor τ̄ : SW (C,Σ) → T such that
Sτ̄ = τ̄Σ′.

In a diagram:

C τ //

Σ

��

ι ((PPPPPPPPPPPPPP T

S

��

SW (C,Σ)
τ̄

66mmmmmmm

Σ′

��

C //

ι ((PPPPPPPPPPPPPP T

SW (C,Σ)
τ̄

66mmmmmmm

Proof: We’ve seen that SW (C,Σ) has property (i). Let’s now begin with the
unicity of τ̄ in (ii). Consider two functors τ1 and τ2 such that

τ1ι = τ = τ2ι and Sτ1 = τ1Σ′, Sτ2 = τ2Σ′.

We know thus from the first equation that for any map f in C we have
τ1([0, f ]) = τ2([0, f ]) = τ(f). Using the two other equations, one also calculates

τ1[n, f ] = τ1Σ′−n[0, f ] = S−nτ1[0, f ] = S−nτ2[0, f ] = τ2Σ′−n[0, f ] = τ2[n, f ]

for any map in SW (C).
Let’s now prove the existence of τ̄ . Denote by µ the natural isomorphism

Sτ → τΣ. For any map f : Σn+iX → Σn+jY (n ≥ −i,−j) in C look at the
following diagram, where the dotted arrow is the composition of all others.

Sn+iτX

��

Sn+i−1µ// · · · Sµ // SτΣn+i−1X
µ // τΣn+iX

τf

��
Sn+jτY

Sn+j−iµ

// · · ·
Sµ
// SτΣn+j−1

µ
// τΣn+jY
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Applying S−n to it provides a map

S−n((Sn+j−1µ−1Sn+j−2µ−1 · · ·Sµ−1µ−1︸ ︷︷ ︸
µ−1

n+j

)(τf)(µSµ · · ·Sn+i−1µ︸ ︷︷ ︸
µn+i

))

in T (SiX,SjY ). Denote it by τ̄
(X,i)(Y,j)
n , and abbreviate the left composition

of isomorphisms by µ−1
n+j and the right one by µn+i. Then τ̄ (X,i)(Y,j)

n+1 sends Σf
to

S−(n+1)(µ−1
n+1+j τ(Σf)µn+1+i) = S−nS−1(Sn+jµ−1 · · ·Sµ−1µ−1(τΣf)µSµ · · ·Sn+iµ)

= S−nS−1(Sn+jµ−1 · · ·Sµ−1(Sτf)Sµ · · ·Sn+iµ)
= S−n(Sn−1+jµ−1 · · ·Sµ−1µ−1(Sτf)µSµ · · ·Sn−1+iµ)
= τ̄ (X,i)(Y,j)

n (f)

where the second equality is the naturality of µ. Thus we have constructed
a cone on the sequential diagram whose colimit is SW ((X, i), (Y, j)). By the
definition of colimit there is a well defined map of sets

τ̄
(Y,j)
(X,i) : SW ((X, i), (Y, j)) −→ T (SiτX, SjτY )

[n, f ] 7−→ S−n(µ−1
n+j τf µn+i)

The collection of these maps for all pairs of objects (X, i), (Y, j) of SW make
up a functor τ̄ . Let’s check this carefully.
Identity axiom. Use that µ0 = Id:

τ̄(1(X,i)) = τ̄
(X,i)
(X,i) ([−i, 1X ]) = Si(µ−1

−i+i ◦ τ1X ◦ µ−i+i) = Siτ1X = 1SiτX

Composition axiom. Note that for all l ≥ 0 the map we abbreviated by µ−1
l is the

inverse of µl. Hence for two composable maps (X, i)
[n,f ] // (Y, j)

[m,g] // (Z, k) in

SW one has:

τ̄([m, g]◦[n, f ]) = τ̄([m+n,Σng◦Σmf ]) = S−m−n(µ−1
m+n+k◦τ(Σ

ng◦Σmf)◦µm+n+i)

= S−m−n(µ−1
m+n+k ◦ τ(Σ

ng) ◦ µm+n+i ◦ µ−1
m+n+i ◦ τ(Σ

mf) ◦ µm+n+i)

= S−m−n(µ−1
m+n+k ◦ τ(Σ

ng) ◦ µm+n+i) ◦ S−m−n(µ−1
m+n+i ◦ τ(Σ

mf) ◦ µm+n+i)

= τ̄([m+ n,Σng]) ◦ τ̄([n+m,σmf ]) = τ̄([m, g]) ◦ τ̄([n, f ])

Thus τ̄ is a functor. Now, again because µ0 = Id, we have trivially that
τ̄ ι = τ . Moreover,

Sτ̄(X, i) = SSiτX = Si+1τX = τ̄(X, i+ 1) = τ̄Σ′(X, i)

and

Sτ̄ [n, f ] = SS−n(µ−1
n+jτ(f)µn+1) = S−(n−1)(µ−1

(n−1)+(j+1)τ(f)µ(n−1)+(j+1))

= τ̄ [n− 1, f ] = τ̄Σ′[n, f ]

show that Sτ̄ = τ̄Σ′.

12



4.2 Limits and colimits

Now we prove a couple of results about limits and colimits that will be useful
later.

Lemma 4.3. Let I be a finite category (i.e. with a finite number of morphisms).
If Σ : C → C preserves limits (colimits) of I-shaped diagrams in C, then also the
canonical functor ι : C → SW preserves such limits (colimits).

Proof: We consider colimits (the proof for limits is similar). Let F : I → C
be a finite diagram in C with colimit (colimF, (ηi)i∈ObI). In SW this becomes

(ι colimF, (ιηi)i) = ((colimF, 0), ([0, ηi])i) .

Consider a test cone ((T, n), ([ni, ti])i) on ιF . (Recall that then in particular
[nj , tj ][0, F (f)] = [ni, ti] for all f : i→ j in I.)
We now have to find a unique τ which makes the following diagram in SW
commute for all i in I.

(Fi, 0)
[ni,ti] //

[0,ηi] %%LLLLLLLLLL
(T, n)

(colimF, 0)

τ

99

Existence: Since the diagram ιF and the test cone on it are composed by a
finite number of commuting diagrams

(Fi, 0)
[ni,ti] //

[0,f ] $$I
IIIIIIII

(T, n)

(Fj , 0)
[nj ,tj ]

::vvvvvvvvv

we can recover them in C as the collection of the following commuting diagrams

ΣNFi
ΣN−ni ti //

ΣNf ##G
GG

GG
GG

GG
ΣN+nT

ΣNFj
ΣN−nj tj

::uuuuuuuuu

for some big N ∈ Z. When glued together, these diagrams form the image under
ΣN of F (I) plus a test cone. Since Σ (and so ΣN ) preserves finite colimits by
hypothesis, there exists a unique morphism t : ΣNcolimF → ΣN+nT in C such
that for all i ∈ ObI the following diagram commutes:

ΣNFi
ΣN−ni ti //

ΣNηi %%LLLLLLLLLL ΣN+nT

ΣNcolimF

t

88

13



Hence by applying ι and then Σ−Nwe get in SW a map Σ−N [0, t] = [N, t] (not
necessarily unique anymore) such that the diagram

(Fi, 0)
[ni,ti] //

[0,ηi] %%LLLLLLLLLL
(T, n)

(colimF, 0)
[N,t]

99

commutes for all i.
Unicity : Consider τ = [m, t] and τ ′ = [m′, t′] such that for all i

[m, t][0, ηi] = [m′, t′][0, ηi] = [ni, ti] .

As before, for an N big enough we get a collection of diagrams

ΣNFi
ΣN−ni ti //

ΣNηi %%LLLLLLLLLL ΣN+nT

ΣNcolimF

ΣN−m′
t′

88qqqqqqqqqqq ΣN−mt

88qqqqqqqqqqq

which commute (more precisely, both triangles in them commute). Then, since
by hypothesis ΣNcolimF is the colimit of ΣNF , the maps ΣN−mt and ΣN−m

′
t′

must coincide, and so must τ and τ ′ by definition.

Corollary 4.4. Let I be a finite category. If C has all I-shaped limits (colimits)
and Σ : C → C preserves them, then also SW (C,Σ) has them and Σ±1 : SW →
SW preserve them.

Proof: That Σ±1 : SW → SW preserve (and reflect) limits and colimits is a
very general fact, true for all invertible functors. Let’s now prove the existential
claim; for variation, we now consider limits. Let F : I → SW be a finite
diagram in SW , and write

F (i) =: (Fi,mi) (i ∈ ObI)

F
(
i

v // j
)

=: [nv, fv] (v ∈ MorI)

for the finitely many objects and morphisms of its image. Then, for an N big
enough the diagram in C consisting of the objects

ΣN+miFi (i ∈ ObI)

and the morphisms
ΣN−nvfv (v ∈ MorI)

has a limit in C, say (
G,

(
G

pi // ΣN+miFi
)
i

)
.

By the above lemma, the functor Σ−N ι preserves limiting cones, so by applying
it to the above limit we obtain a limiting cone(

(G,−N),
(

(G,−N)
[N,pi] // (Fi,mi)

)
i

)
in SW for the original diagram F .

14



5 The Spanier-Whitehead category is additive

Recall our convention. Instead of working with the “real” homotopy category of
a pointed model category and its suspension, we assumed that our pair (H,Σ)
satisfies the conditions (H0)-(H6). So let us now consider again such a pair.
First though we need to recall one more useful fact. (I should also warn the
reader that this section might seem rather pedantic, but I thought it best to be
precise and give all the constructions explicitly.)

Lemma 5.1. Fix a small category I, and consider functors F : I → Ab. Let
U be the forgetful functor Ab → Set. Then there exists a well defined map of
sets

θ : colim (UF ) → U(colimF )

which is a natural transformation of functors colimU,Ucolim : AbI → Set.
Morover, if I ' N, i.e. in the case of sequential colimits, θ is a natural isomor-
phism.

Ab

U

��
I

F

>>||||||||
UF
// Set

Proof: The existence of the map θ is given simply by the universal property
of colimits. Its naturality comes from the naturality of all the maps involved in
its construction. One might like to see explicitly how this is done.
Recall then that

colimUF =
( ∐

i

UFi
)
/ ∼

where the equivalence relation ∼ is that induced by ai ∼ f(ai) for every map
f : Fi → Fj in the diagram UF (I); and recall that the colimit of F in Ab is

colimF =
( ⊕

i

Fi
)
/K

where K is the abelian subgroup generated by elements of the form ei(ai) −
ej(f(ai)) for all maps f : Fi → Fj in the diagram F (I) (here ei denotes the
canonical inclusion Fi ↪→

⊕
j Fj). Consider the map of sets

qiei :
∐
i Fi

//⊕
i Fi

defined by the canonical inclusions ei. Composing with the canonical projection
onto the set of cosets provides a map

θ′ :
∐
i Fi

//⊕
i Fi

// // (
⊕

i Fi)/K

which sends (i, a) to the coset ei(a) +K. Now, say that aj = f(ai) for some f
in the diagram. Then θ′ sends (i, ai) to ei(ai) +K and (j, aj) to ej(aj) +K =
ej(f(ai)) +K, and the difference of their images is in K. Thus there is a well
defined map of sets

θ : (
∐
i Fi)/ ∼ // (

⊕
i Fi)/K

15



as wished which sends the class of (i, a) to the coset ei(a) +K.
In the case when I ' N, this map of sets

θ : colim (UF ) → U(colimF )

[i, a] 7−→ ei(a) +K

is easily seen to have as a two-sided inverse the map which sends∑
i1<...<ik

eij (aj) +K = eik
(
Σik−i1a1 + . . .+ Σik−ik−1ak−1 + ak

)
+K

to the equivalence class[
ik,Σik−i1a1 + . . .+ Σik−ik−1ak−1 + ak

]
.

The statement in this lemma can be generalized to filtered colimits, but we have
no use here for this extra generality.

Lemma 5.2. The Spanier-Whitehead category SW (H,Σ) is additive.

Proof: What we need is an abelian group structure on the hom sets SW ((X, i), (Y, j))
which is distributive with respect to the composition (which would make SW
into a ‘pre-additive’ category, or ‘Ab-category’), a zero object, and direct sums
for any two objects. For the abelian group structure, it would suffice to find a
lift SW ′(−,−) of the hom bifunctor SW (−,−) to the category Ab of abelian
groups along the forgetful functor U : Ab → Set.

Ab

U

��
SW op × SW

SW ′(−,−)
55

SW (−,−)
// Set

(5)

Indeed, the functoriality of SW ′(A,B) in the first and second variable just
means that precomposition and composition (that is f∗ = SW ′(f,B) and g∗ =
SW ′(A, g) for an f : A′ → A resp. a g : B → B′) are group homomorphisms,
i.e. that (h+ h′)f = hf + h′f and g(h+ h′) = gh+ gh′.

Condition (H0)(b) says that the sets in the sequence whose colimit de-
fines SW ((X, i), (Y, j)), except possibly for the first two, are abelian groups
(see Def. (4.1)). Moreover, because of (H0)(c) and Remark (3.1), the maps in
that sequence are group homomorphisms, except possibly for the leftmost one.
Therefore, it is just natural to equip the hom sets SW ((X, i), (Y, j)) with a func-
torial abelian group structure simply by taking the colimit of the sequence in Ab
instead of Set. More precisely, one can define the bifunctor SW ′((X, i), (Y, j))
to be the following colimit in Ab:

colim
n ≥ −i+ 2,−j

(
. . .

Σ→ H(Σn+iX,Σn+jY ) Σ→ H(Σn+1+iX,Σn+1+jY ) Σ→ . . .

)

(Notice that the necessary “+2” after the index i doesn’t matter much, since
every class [n, f ] in the colimit as taken in Definition (4.1) has representatives
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also in the hom groups H(Σn+iX,Σn+jY ) for arbitrarily big n’s.) There is
a (little) problem here though: the forgetful functor U : Ab → Set doesn’t
commute with colimits in general (only with limits, having the free abelian
group functor for left adjoint), so diagram (5) doesn’t have to commute. In
other words: by taking the colimits of Def. (4.1) in the category Ab of abelian
groups instead of in Set we would define a category “SW ′(H,Σ)” which is a
priori different from SW (H,Σ). Fortunately, Lemma (5.1) applies here, so that
diagram (5) commutes up to natural isomorphism, i.e. there is an isomorphism
of bifunctors θ : SW (−,−) ' U ◦ SW ′(−,−). (Notice that here, instead of
looking at all sequences F : N → Ab, we confine our attention to a family with
parameter a pair of objects (X, i), (Y, j) of SW .) In other words, Lemma (5.1)
implies that the categories SW (H,Σ) and “SW ′(H,Σ)” are equivalent. Thus
the Spanier-Whitehead category SW is pre-additive. One can use the map θ,
given explicitly in the proof of Lemma (5.1), to see how the group structure on
the hom sets works. This turns out to be very simply

[n, f ] + [m, g] := [n+m+ 2,Σm+2f + Σn+2g]

for any two parallel arrows f, g : (X, i) → (Y, j). (The “+2” on the right hand
side can be omitted whenever n,m ≥ −i+ 2.)

What has been shown so far is that SW is a preadditive category (or “Ab-
category”). In such a category, an object is a zero object iff it is initial and iff
it is final (see [3], Prop. 1 p. 190). Therefore SW has a zero object, which is the
image under the canonical functor ι (which preserves finite colimits by Lemma
(4.3)) of the zero object (thus in particular the initial object, i.e. the empty
coproduct) ∗ in H. (Here we have used that H, by (H0)(a), has a zero object
and that Σ preserves finite coproducts.)

Also in a preadditive category, two objects have a product or a coproduct if
and only if they have a direct sum (see [3] Thm 2, p. 190). Because SW has all
finite coproducts (by (Ho)(a) and Corollary (4.4)), we have shown that SW is
additive.
More precisely, direct sums are as follows. Given a coproduct diagram

(X, i)
η1 // (X, i) ∨ (Y, j) (Y, j)

η2oo

in SW , its definition provides a unique map

(X, i) ∨ (Y, j)
π1=(1,0)// (X, i)

whose components are π1η1 = 1(X,i) and π1η2 = 0, and a unique

(X, i) ∨ (Y, j)
π2=(0,1)// (Y, j)

with components π2η1 = 0 and π2η2 = 1(Y,j). It is immediate to check that the
diagram

(X, i)
η1 // (X, i) ∨ (Y, j)
π1
oo

π2
// (Y, j)

η2oo

17



satisfies the direct sum equations

π1η1 = 1(X,i), π2η2 = 1(Y,j), η1π1 + π2η2 = 1(X,i)∨(Y,j) .

Hence in SW from now on we shall write (X, i)⊕ (Y, j) instead of (X, i)∨ (Y, j),
and we shall denote the zero object ι(∗) by 0, as usual in an additive cate-
gory.

Remark 5.3. Note that the suspension Σ : SW (H,Σ) → SW (H,Σ) is an ad-
ditive functor. This is because, by (H0)(a) and Corollary (4.4), it preserves

coproduct diagrams (X, i)
η1 //(X, i) ∨ (Y, j) (Y, j)

η2oo ; hence it preserves
also direct sum diagrams (see the construction at the end of the above proof)
and is therefore additive. In particular Σ preserves the zero object, Σ(0) = 0.

6 The Spanier-Whitehead category is triangu-
lated

6.1 Triangulated categories

Let’s now recall the exact definition of a triangulated category (Verdier [6]).

Definition 6.1 (Triangulated category). Call a diagram of the form

A
u // B

v // C
w // ΣA

a triangle. We will occasionally abbreviate such a triangle by (u, v, w), or we
will picture it as

C
w◦~

~~

��~~
~

A u
// B

v

__@@@@@@@

(A circled arrow f : X ◦ //Y denotes a “morphism of degree one” f : X →
ΣY .) A morphism of triangles is a commutative diagram of the form

A

f

��

u // B

g

��

v // C

h

��

w // ΣA

Σf

��
A′

u′ // B′
v′ // C ′

w′ // ΣA′

Then one defines the notion of isomorphism of triangles in the obvious way.
Now, a (Verdier or classical) triangulated category is an additive category K
together with an additive self-equivalence Σ called suspension (or translation or
shift) and together with a (classical) triangulation on K , that is a collection T
of triangles in K, called distinguished triangles, which satisfy the following four
axioms.

(TR1) (i) Every morphism u in K fits into some distinguished triangle (u, v, w).
(ii) The collection T is “replete”, i.e., any triangle in K isomorphic (in the
above sense) to a distinguished triangle, is also distinguished.
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(iii) For every object A in K, the triangle A
1 //A //0 //ΣA is

distinguished. (Or equivalently in the presence of (TR2), the triangle

0 //A
1 //A //0 is distinguished.)

(TR2) (Rotation Axiom) If A u //B
v //C

w //ΣA is distinguished, then
also

B
v // C

w // ΣA
−Σu // ΣB

Σ−1C
−Σ−1w// A

u // B
v // C

are distinguished. One says that (v, w,−Σu) is “(u, v, w) rotated to the
left” and that (−Σ−1w, u, v) is “(u, v, w) rotated to the right”1. (Here
Σ−1 is the quasi-inverse of the suspension Σ, i.e. ΣΣ−1 ' IdK ' Σ−1Σ
naturally. In the practice, one tends to treat these natural isos as equali-
ties.)

(TR3) (Morphism Axiom) Given a (solid) diagram

A

f

��

u // B

��

// C

��

// ΣA

Σf

��
A′

u′
// B′ // C // ΣA

where the rows are distinguished triangles and the left square commutes,
there exists a (nonunique) dotted arrow which makes the rest of the dia-
gram commute. Somewhat criptically, one could say that every morphism
of morphisms u and u′ (i.e., the commuting square on the left) completes
to a morphism of distinguished triangles for any choice of distinguished
triangles containing u resp. u′.

(TR4) (Composition or Octahedron Axiom)

Given a composition h = ( X
f // Y

g // Z ) of two morphisms and
given three distinguished triangles

X
f // Y

f ′ // U
f ′′ // ΣX

Y
g // Z

g′ // W
g′′ // ΣY

X
h // Z

h′ // V
h′′ // ΣX

on f , g and h respectively, there exist two morphisms s : U → V , s′ : V →
W , such that the triangle

U
s // V

s′ // W
Σf ′◦g′′// ΣU

1Some authors’ terminology has ‘right’ and ‘left’ swapped. Exercise: Find an epistemolog-
ical explanation of this curious phenomenon.
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is distinguished, and such that

h′′s = f ′′ s′h′ = g′

and sf ′ = h′g g′′s′ = (Σf)h′′ (6)

There are many ways to visualize this information. Here is a “flat octa-
hedron” (with s′′ := Σf ′ ◦ g′′):

V
s′

  
◦h′′





U

s

??

◦~
~~~f ′′

~~~~~
~

W◦s
′′

oo

◦}
}}}g′′

~~}}}
}

X
f

//

h

88Y g
//

f ′
__@@@@@@@

Z

g′
``AAAAAAAA

h′

nn

The equations (6) make the diagram commutative (wherever it can), while
the four ‘triangles’ in it of the form

·
◦�

���

�����
�

· // ·

^^=======

are all distinguished. We will call such a diagram with the above good
properties an octahedron. Thus this axiom can be rephrased as: Any
choice of distinguished triangles on the three morphisms of a composition
can be completed to an octahedron.
In the presence of (TR1-3), this is known to be equivalent to the following
(otherwise weaker) version.

(TR4’) Given a composition h = g ◦ f , there is an octahedron (i.e. four
distinguished triangles with the good properties as above) containing it.

6.2 The triangulation on SW (H, Σ)

We shall now see how one can use the collection of cofiber sequences in H
to produce a triangulation on SW in a very natural way. Let’s begin with a
technical definition.

Definition 6.2. Given a cofiber sequence (3) in H, one can always ‘shorten’ it
to a triangle

A
f // B

g // C
∂ // ΣA

using the boundary map ∂ = (0, 1)◦ν of (3). Call such triangles in H shortened
cofiber sequences.

Definition 6.3 (The triangulation T on SW (H,Σ)). A triangle

(X, i) α // (Y, j)
β // (Z, k)

γ // Σ(X, i) = (X, i+ 1) (7)
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in SW (H,Σ) belongs to the collection T of distinguished triangles if and only
if, up to an even number of suspensions, it is isomorphic to the canonical image
of some shortened cofiber sequence (f, g, ∂). That is, (α, β, γ) is distinguished
if there exists a cofiber sequence

A
f // B

g // C C
ν // C ∨ ΣA

in H, an n ∈ Z and an isomorphism of triangles

Σ2n(X, i) Σ2nα //

φ1 '
��

Σ2n(Y, j)

φ2 '
��

Σ2nβ // Σ2n(Z, k)

φ3 '
��

Σ2nγ // Σ2n(X, i+ 1)

Σφ1 '
��

ιA
ιf // ιB

ιg // ιC
ι∂ // ιΣA = ΣιA

(8)

where ∂ is the boundary map of the cofiber sequence.

Remark 6.4. By definition, the boundary map of a cofiber sequence (3) is

∂ : C
ν // C ∨ ΣA

(0,1) // ΣA

and is therefore determined by the action ν. By sending the cofiber sequence
in the additive category SW , one sees that the canonical image ιν of the action
is in turn determined by the canonical image ι∂ of the boundary map. This is
because in an additive category a map into a direct sum is uniquely determined
by its components (this is not true in general for a map into a coproduct!). In
SW one can write

ι∂ : (C, 0)

(
1
ι∂

)
// (C, 0)⊕ (A, 1)

(0 1) // (A, 1)

(remember that ι preserves finite limits and colimits by Lemma (4.3)). Indeed,
the second component of ιν is ι∂ by definition, and the first must by the identity
of C by the first axiom of a coaction (see Def. (2.5)): The image in SW of the
unit axiom of a coaction, that is of the triangle on the right of diagram (2), is

ιX ⊕ ιA
(1 0) // ιX ⊕ 0

ιX

(10)

88rrrrrrrrrr
ν=(?∂)

OO

hence ? = 1ιX . Because of this, when sending cofiber sequences in some additive
category (i.e., up to suspension, when studying distinguished triangles), one can
forget about their actions and all the complications thereof, since it is enough
to keep track of the boundary maps (i.e., the ‘third maps’ γ of distinguished
triangles), which contain just the same amount of information. This is one of
the many advantages of working in an additive category.

Now time has come to prove our main theorem, stated below. Since we
have proven already that SW (H,Σ) is additive and that the suspension Σ :
SW (H,Σ) → SW (H,Σ) is an additive functor (Lemma (5.2), Remark (5.3)),
we now have to check that the axioms (TR1)-(TR4) are satisfied.

Theorem 6.5 (Main theorem). The Spanier-Whitehead category SW (H,Σ) is
triangulated, where the triangulation T is that of Definition (6.3).
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6.3 Proving the axioms

Lemma 6.6. If (f, g, ∂) is a shortened cofiber sequence in H (see Def. (6.2)),
then so is (Σ2f,Σ2g,Σ2∂).

Proof: By definition, there is a cofiber sequence (3) whose shortened version
is (f, g, ∂). By (H4), one obtains out of (3) the following commuting diagram,
where the top row is another shortened cofiber sequence:

B
g // C

∂ // ΣA

mΣA

��

∂f //

νf ))SSSSSSSSSSSSSSSS ΣB

ΣA ∨ ΣA
1∨(iΣB◦Σf)

// ΣA ∨ ΣB

(0,1)

OO

As should be clear, mΣA is the comultiplication of the cogroup ΣA, iΣB is the
coinverse of the cogroup ΣB, and νf is the coaction belonging to the sequence.
Let’s now take a closer look at ∂f ; consider the following diagram, where the
unnamed isomorphism is the canonical one (i.e. the inverse of (0, 1)).

ΣA
mΣA //

'
%%KKKKKKKKK ΣA ∨ ΣA

1∨(iΣB◦Σf) //

0∨1

��

ΣA ∨ ΣB

(0,1)

��
0 ∨ ΣA

(0,iΣB◦Σf)
// ΣB

The square on the right obviously commutes, and the triangle on the left com-
mutes also because it is part of the counit axiom for the cogroup ΣA (see
(2.3); notice that e is forced to be the zero map, since the initial object 0
here is also final). Since one path from ΣA to ΣB is ∂f by definition and an-
other one is (0, iΣB ◦ Σf)◦ '= iΣB ◦ Σf , we have ∂f = iΣB ◦ Σf . With this
knowledge, we can now apply (H4) twice more (to the ‘unshortened’ cofiber
sequence (g, ∂, νf ), of course) in order to get the shortened cofiber sequence
(iΣB ◦Σf, iΣC ◦Σg, iΣ2A ◦Σ∂). Applying it three more times we get the short-
ened cofiber sequence

(iΣ2B ◦ Σ(iΣB ◦ Σf), iΣ2C ◦ Σ(iΣC ◦ Σg), iΣ3A ◦ Σ(iΣ2A ◦ Σ∂)) . (9)

Now we know by (H0)(c) that Σ : C → C preserves the structure morphisms
of the cogroup ΣX; in particular Σ(iΣX) = iΣ2X . We need also to know that
iX ◦ iX = 1X for any cogroup X. This follows from the axioms of a usual
group and the Yoneda Lemma by the same argument used in Remark (3.1).
Everything said, we obtain that the shortened cofiber sequence (9) is equal to
(Σ2f,Σ2g,Σ2∂).

Lemma 6.7. (SW (H,Σ),Σ, T ) satisfies (TR1).

Proof: (i) Let α = [m, f ] : (X, i) → (Y, j) be an arbitrary morphism in SW .
Choose n with 2n ≥ m. Then

Σ2nα : Σ2n(X, i) −→ Σ2n(Y, j)
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is the canonical image of

Σ2n−mf : Σ2n+iX −→ Σ2n+jY .

By (H3) the above morphism fits into some shortened cofiber sequence

Σ2n+iX
Σ2n−mf// Σ2n+jY

g // C
∂ // Σ2n+i+1X

in C, whose canonical image is

(X, i+ 2n)
[m−2n,f ]// (Y, j + 2n)

[0,g] // (C, 0)
[0,∂] // (X, i+ 1 + 2n) .

Thus, after applying Σ−2n, our map α fits into the distinguished triangle

(X, i) α // (Y, j)
[2n,g] // (C,−2n)

[2n,∂] // (X, i+ 1) .

(ii) T is obviously replete because of how distinguished triangles are defined in
SW . Notice that, by Remark (3.2), a morphism of cofiber sequences translates
neatly into a morphism of triangles.

(iii) Consider 0 // (X, i) 1 // (X, i) // 0 . Choose an n such that n ≥
−i. Then the diagram

0 = Σ2n0 // (X, i+ 2n) 1 // (X, i+ 2n) // 0

0 = ι(∗) // ιΣi+2nX
1 // ιΣi+2n

ι∂=0 // 0

commutes, where the bottom line is the canonical image of a cofiber sequence
in C, by courtesy of (H2).

Lemma 6.8. (SW (H,Σ),Σ, T ) satisfies (TR2), i.e. Rotation.

Proof: Consider the diagram (8) (copied below) as a certification that the
triangle (α, β, γ) is distinguished, where the bottom row is the canonical image
of a shortened cofiber sequence (f, g, ∂) in H.

Σ2n(X, i) Σ2nα //

φ1 '
��

Σ2n(Y, j)

φ2 '
��

Σ2nβ // Σ2n(Z, k)

φ3 '
��

Σ2nγ // Σ2n(X, i+ 1)

Σφ1 '
��

ιA
ιf // ιB

ιg // ιC
ι∂ // ιΣA = ΣιA

Applying (H4) to (the unshortened version of) (f, g, ∂) yields the shortened
cofiber sequence (g, ∂, ∂f = iΣB ◦Σf), as shown in the proof of Lemma (6.6). If
we can show that in SW

ι(iΣB ◦ Σf) = −ιΣf , (10)
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then the triangle (β, γ,−Σα) is also distinguished, as shown by the following
commuting diagram.

(Y, j + 2n)
Σ2nβ //

φ2

��

(Z, k + 2n)

φ3

��

Σ2nγ // (X, i+ 1 + 2n)

Σφ1

��

−Σ2n+1α// (Y, j + 1 + 2n)

Σφ2

��
ιB

ιg // ιC
ι∂ // ιΣA

ι∂f =−ιΣf // ιΣB

(In particular then the rightmost square would commute: (Σφ2)(−Σ2n+1α) =
−Σ(φ2 ◦Σ2nα) = −Σ(ιf ◦φ1) = (−ιΣf)(Σφ1), where the second equality is the
commutativity of the first square in (8).) Thus the first half of (TR2) would be
proven.

We proceed to prove (10). Let’s begin by considering an arbitrary cogroup
(G,m, e, i) in H. Since the category SW is additive, the canonical images of
the commuting diagrams which define the cogroup have the following form:

G⊕G⊕G G⊕G

(
1

m

)
oo G G⊕G

(i 1)oo

G⊕G

(
m

1

) OO
G

moo

m

OO

0

0

OO

G
e= 0oo

m

OO

0⊕G G⊕G

(
e

1

)
oo

(
1

e

)
// G⊕ 0

G

(
0
1

)ddJJJJJJJJJJ
m

OO (
1
0

) ::tttttttttt

It is now easy to determine the components m1,m2 of m =
(
m1
m2

)
. Since e = 0

(because here the initial object 0 is also final), the third diagram says that
m1 = m2 = 1G. Thus m =

(
1
1

)
. The second diagram then says that

0 =
(
i 1

) (
1
1

)
= i+ 1

i.e. that i = −1G.2 Hence choosing G = ΣB we get ι(iΣB ◦ Σf) = (−1ΣB) ◦
(ιΣf) = −ιΣf , as wished.

Let’s now prove the second half of (TR2). We must show that

(Z, k − 1)
−Σ−1γ// (X, i) α // (Y, j)

β // (Z, k) (11)

is distinguished. Let’s apply five times ‘rotation to the left’ (i.e. the first half of
the axiom) on the distinguished triangle (α, β, γ). Thus we obtain the triangle

(Z, k + 1)
−Σγ // (X, i+ 2) Σ2α // (Y, j + 2)

Σ2β // (Z, k + 2)

2Thus, in particular, all the structure morphisms of a cogroup object in an additive category
are uniquely determined. This follows also by Prop. (2.6) and the fact that the additive
structure of an additive category is intrinsic to the category, i.e. if it exists, it is unique.
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which is distinguished, that is ∃n etc. such that

(Z,(2n+2)+k−1)

'
��

−Σ(2n+2)−1γ// (X,(2n+2)+i)

'
��

Σ2n+2α// (Y,(2n+2)+j)

'
��

Σ2n+2β// (Z,(2n+2)+k)

Σ'
��

(A,0) // (B,0) // (C,0) // (A,1)

By definition, this means also that (11) is distinguished.

Lemma 6.9. (SW (H,Σ),Σ, T ) satisfies (TR3), i.e. Morphism.

Proof: Consider the following (solid) diagram in SW , where the rows are
distinguished and the square on the left commutes.

(X, i)

ψ1

��

α // (Y, j)

ψ2

��

β // (Z, k)

��

γ // (X, i+ 1)

Σψ1

��
(X ′, i′) α′ // (Y ′, j′)

β′ // (Z ′, k′)
γ′ // (X ′, i′ + 1)

(12)

Consider also diagram (8) as a certification that the triangle (α, β, γ) is distin-
guished, and a similar diagram (with everything primed) for (α′, β′, γ′). Now
suspend these three diagrams so as to make them coherent, as follows.

(A, 2n′)
ιΣ2n′f // (B, 2n′)

ιΣ2n′g // (C, 2n′) ιΣ2n′∂ // (A, 1+2n′)

(X, i+2(n+n′))

Σ2n′φ1 '

OO

Σ2(n+n′)ψ1

��

Σ2(n+n′)α// (Y, j+2(n+n′))

Σ2n′φ2 '

OO

Σ2(n+n′)ψ2

��

Σ2(n+n′)β// (Z, k+2(n+n′))

Σ2n′φ3 '

OO

��

Σ2(n+n′)γ// (X, i+1+2(n+n′))

Σ2n′+1φ1 '

OO

Σ2(n+n′)+1ψ1

��
(X ′, i′+2(n′+n))

Σ2nφ′1 '
��

Σ2(n+n′)α′
// (Y ′, j′+2(n′+n))

Σ2nφ′2 '
��

Σ2(n+n′)β′
// (Z ′, k′+2(n′+n))

Σ2(n+n′)γ′
//

Σ2nφ′3 '
��

(X ′, i′+1+2(n′+n))

Σ2n+1φ′1 '
��

(A′, 2n)
ιΣ2nf ′

// (B′, 2n)
ιΣ2ng′

// (C ′, 2n)
ιΣ2n∂′

// (A′, 1+2n)

(13)
Use the following notation for the vertical compositions in (13).

ε1 := (Σ2nφ′1)(Σ
2(n+n′)ψ1)(Σ2n′φ1)−1

ε2 := (Σ2nφ′2)(Σ
2(n+n′)ψ2)(Σ2n′φ2)−1

and Σε1 .

Hence we can abbreviate diagram (13) as follows.

(A, 2n′)

ε1

��

ιΣ2n′f // (B, 2n′)

ε2

��

ιΣ2n′g // (C, 2n′)

��

ιΣ2n′∂ // (A, 2n′ + 1)

Σε1

��
(A′, 2n)

ιΣ2nf ′
// (B′, 2n)

ιΣ2ng′
// (C ′, 2n)

ιΣ2n∂′
// (A′, 2n+ 1)

(14)
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By possibly suspending some more (even) number of times we can assume that
this diagram is the canonical image of the following (solid) diagram in H.

Σ2n′A

e1

��

Σ2n′f // Σ2n′B

e2

��

Σ2n′g // Σ2n′C

��

Σ2n′∂// Σ2n′+1A

Σe1

��
Σ2nA′

Σ2nf ′
// Σ2nB′

Σ2ng′
// Σ2nC ′

Σ2n∂′
// Σ2n+1A′

(15)

By asking again that 2n, 2n′ be big enough, we can assume that the square on
the left commutes. Now, the iterated application of Lemma (6.6) says that the
two rows in (15) are shortened cofiber sequences. Hence (H5) applies to their
‘unshortened’ versions (which are cofiber sequences), yielding some dotted map
e3 : Σ2n′C → Σ2nC ′ which makes the square on its left commute in (15) and
which is Σe1-equivariant. Because of Remark (3.2) on boundary maps, the Σe1-
equivariance of e3 implies that also the square on its right commutes. Hence
the whole diagram (15) commutes, and so does (14) in SW with ιe3 the dotted
map. Then the map

x := (Σ2nφ′3)
−1(ιe3)(Σ2n′φ3)

completes (13) and makes it commutative, because a diagram isomorphic to
a commutative diagram is commutative. Finally we obtain a dotted arrow
ψ3 := Σ−2(n+n′)x which completes (12) to a morphism of distinguished trian-
gles in SW .

Lemma 6.10. (SW (H,Σ),Σ, T ) satisfies (TR4), i.e. Composition.

Proof: We prove the weak version (TR4’). Consider the composition of two
morphisms of SW , that is a commutative diagram of the following form.

(X, i)
[n,f ] //

[l,h]

44(Y, j)
[m,g] // (Z, k) (16)

Then there is an N ∈ Z even and big enough, so as to make the diagram below
commute in H.

ΣN+iX
ΣN−nf//

ΣN−lh

33ΣN+jY
ΣN−mg// ΣN+kZ

Now apply (H6) to this composition of morphisms and fit the yielded informa-
tion into a “flat octahedron” shape as in (TR4):

V
s′

$$H
HHHHHHHH

◦h′′





U

s

;;vvvvvvvvv

◦
f ′′

{{

W◦s
′′

oo

◦
g′′

{{
ΣN+iX

ΣN−nf

//

ΣN−lh

55ΣN+jY
ΣN−mg

//

f ′
ccGGGGGGGGG

ΣN+kZ

g′
ccHHHHHHHHH

h′

oo (17)
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More precisely, by (H6) one gets shortened cofiber sequences

ΣN+iX
ΣN−nf// ΣN+jY

f ′ // U
f ′′:=∂ // ΣN+i+1X

ΣN+jY
ΣN−mg// ΣN+kZ

g′ // W
g′′:=∂ // ΣN+j+1Y

ΣN+iX
ΣN−lh// ΣN+kZ

h′ // V
h′′:=∂ // ΣN+i+1X

and

U
s // V

s′ // W
s′′:=∂ // ΣU

(where the ΣU -coaction on W is the composite

νs : W
νg // W ∨ Σ(ΣN+jY )

1∨Σf ′ // W ∨ ΣU (18)

where νg is the Σ(ΣN+jY )-coaction on W ), such that

s′h′ = g′ and h′ ◦ ΣN−mG = sf ′ (19)

and such that:
s is ΣN+i+11X -equivariant,

s′ is ΣN−n+1f -equivariant. (20)

Now we check that the canonical image of (17) is an octahedron in SW .
The above shortened cofiber sequences become the required distinguished trian-
gles. The equations (19) make the upper right ‘triangle’3 and the ‘right square’
commute. Because of Remark (3.2), (20) means that we have the following
commuting diagram, which in SW becomes two morphisms of distinguished
triangles.

ΣN+iX
ΣN−nf// ΣN+jY

ΣN−mg

��

f ′ // U

s

��

f ′′ // ΣN+i+1X

ΣN+iX

ΣN−nf

��

ΣN−lh

// ΣN+kZ
h′
// V

s′

��

h′′
// ΣN+i+1X

Σ(ΣN−nf)

��
ΣN+jY

ΣN−mg

// ΣN+kZ
g′
// W

g′′
// ΣN+j+1Y

Because in particular the two rightmost squares commute, we have

h′′s = f ′′ and g′′s′ = (ΣN−n+1f) ◦ h′′ ,

i.e. in (17) also the left ‘triangle’ and the left ‘square’ are commutative.
We are left with checking that the inner ‘triangle’ of the canonical image of (17)
commutes in SW , i.e. that

ιs′′ = ι(Σf ′ ◦ g′′) .
3Meaning here a diagram shaped as a triangle. I apologize for the awkwardness of the

terminology.
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To see this, it suffices to calculate explicitly ιs′′ in SW , using (18) and the fact
that ινg =

(
1
g′′

)
:

ιs′′ = ι

(
W

νs // W ∨ ΣU
(0,1) // ΣU

)

=
(
ιW

(
1
ιg′′

)
// ιW ⊕ ιΣ(ΣN+jY )

(
1

ιΣf′
)
// ιW ⊕ ιΣU

(0 1) // ιΣU
)

= (0 1)
(
1
ιΣf ′

)(
1
ιg′′

)
= ι(Σf ′ ◦ g′′) .

So now we have proven that the image of (17) in SW is an octahedron for
the N th suspension of the composition (16). To get an octahedron for (16), it
suffices to desuspend N times the one we have. In fact, it is true in general that
an octahedron which is suspended or desuspended an even number of times
remains an octahedron. Indeed, the required commutativity of the ‘squares’
and ‘triangles’ is clear, and the fact that the distinguished triangles remain dis-
tinguished when suspended or desuspended an even number of times is true
in every triangulated category. For instance, see what happens when one sus-
pends twice a distinguished triangle A u //B

v //C
w //ΣA (compare with

Lemma (6.6)!). What one gets is Σ2A
Σ2u //Σ2B

Σ2v //Σ2C
Σ2w //Σ3A , which

is the same as the original triangle rotated six times to the right, and so it is
distinguished by (TR2) (here Lemma (6.8)).

With this last lemma, the proof of Theorem (6.5) is completed.
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Part II

Application to homotopical
algebra
The second part of this work is devoted to prove that the homotopy category
of a pointed model category, together with its suspension endofunctor and its
collection of cofiber sequences (defined in Section 8), satisfies the conditions
(H0)-(H6), although the “proofs” will mainly consist of pointers to the lit-
erature. Once we succeed in this, Theorem (6.5) applies, showing that the
Spanier-Whitehead category obtained by inverting the suspension of the homo-
topy category of a model category is always triangulated.

The material of the next section originates from Quillen’s paper [4], and
was inspired by the tools of homotopy in algebraic topology, whence the termi-
nology. Modern presentations of this notions can be found in e.g. Dwyer and
Spalinsky [1] and Hovey [2].

7 Model categories

This section is just a collection of the very basic definitions and the very first
results in the theory of model categories, and it serves to fix notation (in the
broadest sense of the word). The more experienced reader may want to skip
it. The more unexperienced reader is strongly advised to consult also the very
readable introductory paper by Dwyer and Spalinski [1]. The middle reader
may go on reading.

Definition 7.1. Given two maps i : A → B and p : X → Y in a category C,
one says that i has the left lifting property (LLP) with respect to p, or that p has
the right lifting property (RLP) with respect to i if for all commutative squares

A

i

��

// X

p

��
B

>>

// Y

there exists a map h : B → X which commutes with the rest of the diagram.
Given a collection K of maps in C, denote by LLP(K) the collection of maps
having the left lifting property with respect to all k in K. Dually, denote by
RLP(K) the collection of maps having the right lifting property with respect to
all k in K.

Definition 7.2 (Model category). A model category is a quadruple M =
(M,Weq, Cof,Fib), where M is a category and Weq, Cof and Fib are classes
of morphisms of M called weak equivalences, cofibrations and fibrations respec-
tively, and satisfying the four axioms (MC1)-(MC5) stated below. In diagrams,
it is usual to denote weak equivalences by ∼ // , cofibrations by // // and
fibrations by // // .

(MC1) The category M has all (small) limits and colimits, in particular prod-
ucts X × Y , coproducts X ∨ Y , pullbacks X ×Z Y , pushouts X ∨Z Y , an
initial object 0 and a final object 1.
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(MC2) The class Weq satisfies the 2-out-of-3 property: Given a composition
g ◦ f , if two out of f , g and g ◦ f are weak equivalences, so is the third.

(MC3) The classes Weq, Cof and Fib are closed under retract. That is, if f
is a retract of g, i.e., if there exists a commutative diagram

X

f

��

// X ′

g

��

// X

f

��
Y // Y ′ // Y

such that the two rows are the identity, and if g is in one of the classes,
so is f .

(MC4) (a) Cof ⊆ LLP(Weq ∩ Fib)
(b) Fib ⊆ RLP(Weq ∩ Cof)

In words, if one calls a map in Weq ∩Fib a trivial fibration and a map in
Weq∩Cof a trivial cofibration, (a) says that cofibrations have the left lift-
ing property with respect to trivial fibrations, and (b) says that fibrations
have the right lifting property with respect to trivial cofibrations.

(MC5) Every morphism f of M can be factorized as
(a) f = p ◦ i, a cofibration i followed by a trivial fibration p, and also as
(b) f = p ◦ i, a trivial cofibration followed by a fibration.

We assume that these factorisations are functorial in f (see [2] Def. 1.1.1).
In particular, in both (a) and (b) a morphism of maps f and g, that is a
commutative square as the one below on the left, induces the dotted map
which ‘links’ the factorisations of f and g by making the diagram on the
right commute.

· f //

��
·
��

· g // ·

 · f //
((RRRRRR

��

·

��
·

66llllll

��
· g //

((RRRRRR ·
·

66llllll

The definition of a model category may vary in different authors. The one
given above is that of Hovey [2] and is slightly stronger than those of [4] and [1].

The following two lemmata are the basic tools for proving things in a model
category.

Lemma 7.3. (i) Cof = LLP(Weq ∩ Fib)
(ii) Weq ∩ Cof = LLP(Fib)
(iii) Fib = RLP(Weq ∩ Cof)
(iv) Weq ∩ Fib = RLP(Cof)

Lemma 7.4. (i) The classes Cof and Weq ∩ Cof are closed under taking
pushouts.
(ii) The classes Fib and Weq ∩ Fib are closed under taking pullbacks.

The following definition identifies objects which turn out to be the “right
ones” for doing homotopy, as we shall see below.
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Definition 7.5. An object X of M is said to be cofibrant if the unique map
0 → X is a cofibration. Dually, X is fibrant if the unique map X → 1 is
a fibration. The cofibrant objects, the fibrant objects, and objects which are
both fibrant and cofibrant in M determine three full subcategories, denoted
respectively by Mc, Mf and Mcf .

Applying the functorial factorisation (MC5)(a) to the the unique map 0 → X
yields

0 //&&
&&MM

MMM
M X

QX
∼
77 77pppppp

The object QX is cofibrant and is naturally weakly equivalent to X (i.e., there
is a natural map QX → X which is a weak equivalence). One calls the functor
X 7→ QX from M to Mc cofibrant replacement functor.

Dually, applying the factorization (MC5)(b) to the unique map X → 1
provides a functor X 7→ RX, called fibrant replacement functor, from M to
Mf , with the property that RX is naturally weakly equivalent to X. The
composition RQ obviously lands in Mcf and has the property that RQX is
weakly equivalent to X.

Definition 7.6. Let A be an object of H. A cylinder object for A is an object
A′ together with a diagram

A ∨A //
(i0,i1) // A′

s
∼
// A

such that s ◦ (i0, i1) = (1, 1). Using (MC5)(a) to factorize (1, 1) : A ∨ A → A
yields a functorial cylinder object which is denoted by IA. In particular, there
is always a cylinder object for any A. Two parallel maps f, g : A → X are
said to be left homotopic (written f ∼l g) if for some cylinder object A′ for
A there is a left homotopy from f to g, that is a map H : A′ → X such that
H ◦ (i0, i1) = (f, g).

Dually, a path object for X is an object X ′′ together with a diagram

X ∼
t // X ′′

(p0,p1)// // X ×X

such that (p0, p1) ◦ t = (1, 1). Applying (MC5)(b) to the diagonal map (1, 1) :
X → X ×X yields a functorial path object PX. Then f, g : A → X are right
homotopic (f ∼r g) if for some path object X ′′ there is a right homotopy from
f to g, i.e. a map K : A→ X ′′ such that (p0, p1) ◦K = (f, g).

The following proposition explains why fibrant and cofibrant objects are
nice, and it shows that the above defined relations are meaningful.

Proposition 7.7. If A is cofibrant and X fibrant, the left homotopy relation
and the right homotopy relation on H(A,X) coincide and are an equivalence
relation, called homotopy relation and denoted by ∼. Moreover, ∼ is compatible
with composition.

Definition 7.8. Let C be an arbitrary category, and let W be a class of mor-
phisms therein. A localisation of C with respect to W is a functor γ : C → C[W−1]
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out of C such that
(a) γ carries morphisms of W to isomorphisms
(b) γ is universal for property (a): If α : C → D is a functor such that γ(f) is an
isomorphism for all f ∈ W, then there exists a unique functor α : C[W−1] → D
such that αγ = α.

In the general case, the localisation can always be constructed using gen-
erators and relations, but nothing guarantees that the class of arrows from an
object to another be a set. In a model category, the localisation with respect
to the class of weak equivalences can be realized by means of the above defined
homotopy relation, as the following theorem states.

Theorem 7.9. If M is a model category, then the localisation of M with re-
spect to the class of weak equivalences, called the homotopy category of M
and denoted by HoM := M[Weq−1], exists and is equivalent to the category
Mcf/ ∼. The localizing functor γ is induced by the composition of the cofibrant
and fibrant replacement functors.

Remark 7.10. One should think of HoM as the category with the same objects
as M and with maps HoM(X,Y ) = M(RQX,RQY )/ ∼. If A is cofibrant and
B is fibrant, one has a natural isomorphism HoM(A,B) 'M(A,B)/ ∼.

The homotopy category Ho(M) of a model category M is not just any cat-
egory, but comes equipped with much extra structure. This structure, together
with Ho(M), is often called the “homotopy theory” ofM. In the case the model
category M is pointed, this begins with the suspension and the loop functors,
with which one defines cofiber and fiber sequences; they are described in the
next section. More in general one can define homotopy pushouts and homotopy
pullbacks (see [1]), but there is more. Hovey [2] has proven that the homotopy
category of a model category is naturally equipped with a closed action of the
homotopy category of simplicial sets. Further on, we’ll need to see a glimpse of
this.

However, perhaps the first thing to remark about the homotopy category of a
model category is that it inherits the products and coproducts of M ([2] Exam-
ple 1.3.3, Prop. 1.3.5), in particular the empty product and coproduct, i.e. the
initial object 0 and the final object 1. IfM is pointed, i.e. 0 ' 1, then 0 ' 1 also
in HoM, thus also HoM is pointed. This takes care of the first half of (H0)(a).

Let F : M→ C be a functor from a model category. One of the prominent
features of model categories is that, under mild assumptions, there exists the left
(resp. right) derived functor LF (resp. RF ): HoM→ C, which, up to natural
transformation from one side or the other, are the best possible approximation
to a factorisation of F through γ : M → HoM. If C is also a model category,
one defines the total left (right) derived functor of F as being the left (right)
derived functor of γC ◦F : M→ HoC. We will not go into detail here. It suffices
to know the following
Example 1. The adjunction |−| : sSet∗ ⇐⇒ Top∗ : Sing of the geometric realisa-
tion functor and the singular functor between the category of pointed simplicial
sets and the category of pointed topological spaces (with the usual model struc-
tures, see [2] §2.4,§3) induces an adjoint equivalence of the total derived functors
L| − | : Ho sSet∗ ⇐⇒ Ho Top∗ : RSing (see [2] Cor. 2.4.24,Thm. 3.6.7). More-
over, since |− | preserves weak equivalences (by the very definition of the model
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structure on simplicial sets), the functor γ ◦ | − | : sSet∗ → Ho Top∗ sends weak
equivalences to isomorphisms, hence it does factorize through Ho sSet∗ and this
factorisation is the same as L|−|. One writes |−| = L|−| : Ho sSet∗ → Ho Top∗.

Such adjunctions of model categories, which induce adjoint equivalences on
the homotopy categories, preserve all the known extra structure (“homotopy
theory”) of the respective categories. They are called Quillen equivalences, and
are to be considered as a kind of ‘weak equivalences’ of model categories, in
some hypothetical higher-order homotopy theory.

8 The homotopy category of a pointed model
category

As we have seen, a model category M always has an initial object 0 and a
final object 1. If the unique map 0 → 1 is an isomorphism, M is pointed.
This is not always the case, but there is a simple procedure to construct a
pointed category out of any category. Define M∗ to be the category M under
the terminal object 1, where an object of M∗ is a map x : 1 → X of M
(usually written (X,x)) and where a morphism f : (X,x) → (Y, y) of M∗ is a
morphism f : X → Y of M such that f(x) = y. Clearly the category M∗ is
pointed, and it inherits the limits, the colimits and the model structure of M
in a straightforward way (one must just pay some attention to the recovery of
the colimits; see [2] Prop. 1.1.8 and preceding remarks).

Thus we can assume that M is a pointed model category, without losing
generality. We shall use the notation H := HoM for the homotopy category
of M, which is also pointed.

Definition 8.1. Let f : X → Y be a map in M. The cofiber of f is the map
g : Y → Z in the pushout square below.

X
f //

��

Y

g

��
∗ // Z

The fiber of f is the map h : W → X in the pullback square

W //

h

��

∗

��
X

f // Y

Equivalently, one can define the cofiber (resp. fiber) of f as the coequalizer
(resp. equalizer) of f and the zero map 0 : X → ∗ → Y .

Theorem 8.2. [Quillen [4], Thm. 2, §I 2.9] There is a functor

(H)op ×H −→ Grp

(X,Y ) 7−→ [X,Y ]1

33



taking pairs of objects of the homotopy category to groups, which is uniquely
determined up to canonical isomorphism by:

[X,Y ]1 = π1(A,B) for A fibrant and B cofibrant.

Moreover, there are two functors Σ,Ω : H → H, called the suspension and the
loop functor, and natural equivalences, such that

H(ΣX,Y ) ' π1(X,Y ) ' H(X,ΩY ) .

In particular, Σ and Ω are adjoint and the functor [−,−]1 is representable in H
in both variables.

The above group π1(A,B) for A fibrant and B cofibrant is constructed by
Quillen as the set of homotopy classes of (left) homotopies from 0 : A → B to
itself (for an adequate notion of “homotopy of homotopies”). This turns out to
be equipped with a group structure which is natural as A runs over Mc and B
over Mf , and the group homomorphisms induced in the first and the second
variable commute, so that π1(−,−) is a functor from (Mc)op×Mf to Grp. The
suspension Σ is first defined on Mc as the cofiber IA→ ΣA of the map (i0, i1) :

A ∨ A → IA (where A ∨A
(i0,i1) //IA

∼ //A is the functorial cylinder object of
A). Thus, by definition, a map from ΣA to some B corresponds uniquely to
a homotopy IA → B from 0 : A → B to itself. Dually, the loop functor Ω is
first defined on Mf as the fiber ΩB → PB of the map (p0, p1) : PB → B of
the path object. The two functors of the theorem are essentially the total left
derived functor of this Σ and the total right derived functor of this Ω.

By the above theorem, the suspension Σ is left adjoint to Ω, so in particular
it preserves the coproducts and the zero object of H. This is the second part
of (H0)(a).

From now on we proceed by following Hovey [2]. As hinted in the previous
section, he proves ([2] Thm. 5.6.2, Thm. 5.7.3) that the homotopy category H
is naturally equipped with a closed (right) action of the homotopy category
Ho sSet∗ of the category of pointed simplicial sets (with the standard model
structure, see [2] §3). This action is basically just a functor

(H)op ×Ho sSet∗ −→ H

(X,K) 7−→ X ∧K

together with an ‘associativity’ and a ‘unit’ natural isomorphisms

(X ∧K) ∧ L ' X ∧ (K ∧ L)

X ∧ ∗ ' X

such that some compatibility diagrams commute. The ∧ in K ∧L is the smash
product of pointed simplicial sets, while ∗ is the one point simplicial set. These
serve respectively as multiplication and unit of a monoidal structure on Ho sSet∗
([2] Prop. 4.2.8-9). The action being “closed” means that there are two functors
Hom and Map and natural isomorphisms

H(X,Hom(K,L)) ' H(X ∧K,Y ) ' Ho sSet∗(K,Map(X,Y )) .
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(Hom and Map should be thought of as functorial ‘hom objects’, or ‘function
spaces’, the first one living inside of H and the second one in Ho sSet∗.) In
particular, for all X ∈ ObH and K ∈ ObHo sSet∗ there are adjunctions

− ∧K : H ⇐⇒ H : Hom(K,−)

X ∧ − : Ho sSet∗ ⇐⇒ H : Map(X,−) .

Thus, since − ∧K and X ∧ − have a right adjoint they preserve colimits, and
in particular coproducts. This yields two more ‘distributivity’ natural isomor-
phisms

(X ∨ Y ) ∧K ' (X ∧K) ∨ (Y ∧K)

X ∧ (K ∨ L) ' (X ∧K) ∨ (X ∧ L)

(see [2] §4 for details).
Hovey defines the suspension on H by the action of the pointed simplicial

circle S1, Σ(−) := − ∧ S1, and the loop functor by Ω(−) := Hom(S1,−). A
close inspection shows that these definitions are equivalent to Quillen’s (see [2]
Def. 6.1.1 and the following remarks).

Proposition 8.3. ΣnX is a natural cogroup object in H for n ≥ 1, abelian for
n ≥ 2. Dually, ΩnX is a natural group object for n ≥ 1, abelian for n ≥ 2. In
particular, (H,Σ) satisfies condition (H0)(b).

Proof: [cf. [2] Cor. 6.1.6, with notation of §6.5] By Proposition (2.6) and Re-
mark (2.7) we must show that for all X,Y ∈ ObH and n ≥ 1 the set H(ΣnX,Y )
is a group (abelian for n ≥ 2) and that the maps induced in both variables are
group homomorphisms. This would imply the part about Ω, because by compos-
ing the adjunction natural isomorphism (bijection) we get a natural isomorphism
of sets H(ΣnX,Y ) ' H(X,ΩnY ), by which we can transport the natural group
structure from the left to the right. One has the following natural bijections:

H(ΣnX,Y ) ' H(X ∧ Sn, Y )
' Ho sSet∗(Sn,Map(X,Y ))
' Ho Top∗(|Sn|, |Map(X,Y )|)
' Ho Top∗(S

n, Z)
' πn(Z) .

The first natural bijection is the repeated application of the associativity of the
Ho sSet∗-action (Sn here is the pointed simplicial n-sphere); the second one is
the closedness of the action (see above); the third one is the adjoint equiva-
lence between Ho sSet∗ and Ho Top∗ of Example (1) of the previous section;
the next one (now Sn denotes the n-sphere as a pointed topological space, Z is
just an abbreviation for the pointed topological space |Map(X,Y )|) is induced
by the homeomorphism |Sn| ' Sn; now, Sn is cofibrant in Top∗ and every
object is fibrant, in particular Z. Hence by Remark (7.10) Ho Top∗(Sn, Z) '
Top∗(Sn, Z)/ ∼, which is by definition the usual homotopy group πn(Z) of
algebraic topology. (Of course, in the model structure of Top∗ the homotpy
equivalence relation ∼ as defined in the previous section corresponds to the
usual homotopy relation rel basepoint.)
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It is a well known fact of algebraic topology that the homotopy groups πn(Z)
are natural groups, abelian for n ≥ 2 (see e.g. Spanier [5] §1.6,§7.2). This shows
that H(ΣnX,Y ) is a group. Maps f into or out of X and Y induce maps f∗
or f∗ into or out of H(ΣnX,Y ), which under the above composition of natural
equivalences correspond to some g∗ or g∗ into or out of πn(Z), which are group
homomorphisms by the naturality of the homotopy groups.

The greatest difficulty we met while proving Theorem (1.1) was that of
finding a proof to the following proposition. The one we found ultimately boils
down to translating back the abstract suspension functor Σ of Quillen to the
classical suspension homomorphism of algebraic topology. In order to do this,
we heavily used the closedness of the Ho sSet∗-action on H; any attempt to
avoid this failed miserably.

Proposition 8.4. The homotopy category H of a pointed model category and
its suspension Σ satisfy condition (H0)(c).

Proof: We prove (H0)(c’) (see Remark (3.1)). In order to do this, it suffices
to show that the following diagram commutes.

H(X ∧ Sn, Y )

−∧S1

��

'
φ // Ho sSet∗(Sn,Map(X,Y))

−∧S1

��
Ho sSet∗(Sn+1,Map(X,Y ) ∧ S1)

k∗

��
H(X ∧ Sn+1, Y ∧ S1) '

φ // Ho sSet∗(Sn+1,Map(X,Y ∧ S1))

Let’s see why this is true. (In this diagram, as well as in the rest of the
proof, we shall consider the associativity isomorphism of the Ho sSet∗-action
as equality.) The horizontal arrows are given by the natural bijection φK,Y :
H(X ∧ K,Y ) ' Ho sSet∗(K,Map(X,Y)) given by the adjunction X ∧ − :
Ho sSet∗ ⇐⇒ H : Map(X,−), and are group isomorphisms by definition (see
the proof of Prop. (8.3)). The map k∗ is induced by a map k : Map(X,Y ) ∧
S1 → Map(X,Y ∧ S1) which we shall define below, and is a group homomor-
phism by naturality of the homotopy groups in Ho sSet∗ (see again the proof of
Prop. (8.3)). The −∧S1 on the right is easily seen to be a group homomorphism
by translating it, via the Quillen equivalence of Example (1), into the classical
“suspension homomorphism” Σ : πn(Z) → πn+1(ΣZ) of algebraic topology ([5]
§8.5). If the diagram commutes, the − ∧ S1 on the left (i.e., our suspension Σ)
would be also a group homomorphism, and (H0)(c’) would be proved.

Instead of proving that the above diagram commutes, we shall prove that the
more general one below does, where Sn resp. S1 are replaced by two arbitrary

36



pointed simplicial sets K resp. L.

H(X ∧K,Y )

−∧L

��

'
φ // Ho sSet∗(K,Map(X,Y))

−∧L
��

Ho sSet∗(K ∧ L,Map(X,Y ) ∧ L)

k∗

��
H(X ∧K ∧ L, Y ∧K ∧ L) '

φ // Ho sSet∗(K ∧ L,Map(X,Y ∧ L))

(21)

Recall now that the natural bijection φ can be completely recovered by the
unit η : IdHo sSet∗ → Map(X,X ∧ −) and counit ε : X ∧ Map(X,−) → IdH
natural maps of the adjunction, as follows:

φ
(
X ∧K

f // Y
)

=
(
K

ηK // Map(X,X ∧K)
Map(X,f) // Map(X,Y )

)
φ−1

(
K

g // Map(X,Y )
)

=
(
X ∧K

X∧g // X ∧Map(X,Y )
εY // Y

)
.

With this notation, we define the map k = kX,Y,L to be

Map(X, εY ∧ L) ◦ ηMap(X,Y )∧L : Map(X,Y ) ∧ L −→ Map(X,Y ∧ L) .

This looks rather complicated, but in fact it is just the thing one gets when
trying to obtain, out of the identity map Map(X,Y) → Map(X,Y), some map
from Map(X,Y) ∧ L to Map(X,Y ∧ L). Now that we know explicitly all the
maps of diagram (21), we can calculate the images of a map h ∈ H(X ∧K,Y ).
Going first down and then to the right yields

α := φ(h ∧ L) = Map(X,h ∧ L) ◦ ηK∧L .

Going first right and then down yields the map

β := k∗(φ(h) ∧ L)
= k∗((Map(X,h) ◦ ηK) ∧ L)
= k∗((Map(X,h) ∧ L) ◦ (ηK ∧ L))
= Map(X, εY ∧ L) ◦ ηMap(X,Y )∧L ◦ (Map(X,h) ∧ L) ◦ (ηK ∧ L) .

Now we must show that α and β are equal, which follows immediately from the
commutativity of the diagram below (α and β are placed on the outer frame of
the diagram).

K ∧ L
ηK∧L //

'&%$ !"#3

ηK∧L
))

Map(X,X ∧K) ∧ L
Map(X,h)∧L //

'&%$ !"#1ηMap(X,X∧K)∧L

��

Map(X,Y ) ∧ L

ηMap(X,Y )∧L

��
Map(X,X ∧Map(X,X ∧K) ∧ L)

'&%$ !"#2

Map(X,X∧Map(X,h)∧L)

//

Map(X,εX∧K∧L)

��

Map(X,X ∧Map(X,Y ) ∧ L)

Map(X,εY ∧L)

��
Map(X,X ∧K ∧ L)

Map(X,h∧L)
// Map(X,Y ∧ L)
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Square '&%$ !"#1 commutes because of the naturality of the unit η of the adjunction.
The naturality of the counit ε makes the square

X ∧Map(X,X ∧K)
X∧Map(X,h) //

εX∧K

��

X ∧Map(X,Y )

εY

��
X ∧K h // Y

commutative. After applying to it the functor Map(X,−∧L), this becomes the
commutative square '&%$ !"#2 . Let us copy here below (in solid arrows) the remaining
square '&%$ !"#3 .

K ∧ L
ηK∧L //

'&%$ !"#3ηK∧L

��

Map(X,X ∧K) ∧ L

ηMap(X,X∧K)∧L

��
Map(X,X ∧K ∧ L)

Map(X,X∧ηK∧L)
// Map(X,X ∧Map(X,X ∧K) ∧ L)

Map(X,εX∧K∧L)oo

Recall now that, by any adjunction F : C ⇐⇒ D : G with unit η : IdC → GF
and counit ε : FG→ IdD, one always has the so-called ‘triangular identities’ of
natural maps εF ◦ Fη = IdF and Gε ◦ ηG = IdG ([3] p. 80). In the case of our
adjunction X ∧ − : Ho sSet∗ ⇐⇒ H : Map(X,−), specializing the first identity
for the object K yields εX∧K ◦ (X ∧ ηK) = 1X∧K , which via application of the
functor Map(X,− ∧ L) becomes the equality

Map(X, εX∧K ∧ L) ◦Map(X,X ∧ ηK ∧ L) = 1Map(X,X∧K∧L) .

Thus, instead of considering square '&%$ !"#3 we can as well consider the square ob-
tained from '&%$ !"#3 by forgetting the lower horizontal arrow, Map(X, εX∧K∧L), and
adding the dotted arrow Map(X,X∧ηK ∧L). But this new square commmutes,
once again, by the naturality of η.

Hovey [2] dedicates chapter 6.2 to prove that in H there is a coaction C →
C ∨ ΣA of the natural group ΣA on the cofiber4 C of a cofibration between
cofibrant objects f : A→ B. Giving a name g : B → C to the cofiber, this can
be written

A
f // B

g // C C // C ∨ ΣA . (22)

Then cofiber sequences are defined as being all diagrams of the form

X // Y // Z Z
ν // Z ∨ ΣX

where ν is also a coaction, which are isomorphic to such a (22), for some cofi-
bration of cofibrant objects f : A → B (hence (H1) tautologically holds; here
‘isomorphic’ has the same meaning as in (H1)). A dual statement is true for
fibrations between fibrant objects f : A → B: there is an action C × ΩB → C
of the natural group ΩB on the fiber C of f . The dual definition of fiber se-
quence is given. In the next chapter 6.3 the basic properties of cofiber and fiber

4Here we abuse notation, since the cofiber is properly a map B → C.
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sequences are proved. Among these are propositions which prove that the col-
lection of cofiber sequences satisfies our conditions (H2)-(H6) (and that fiber
sequences satisfy the dual conditions). Here are the exact references:

(H2) Lemma 6.3.2
(H3) Lemma 6.3.3
(H4) Prop. 6.3.4
(H5) Prop. 6.3.5
(H6) Prop. 6.3.6

Now we can finally apply Theorem (6.5) of Part I to the pair (H,Σ) consisting
of the homotopy category of a pointed model category and its suspension Σ, thus
proving Theorem (1.1) as stated in the introduction.
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