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To my knowledge, the language of category theory almost never appears in
textbook treatments of the theory of C*-algebras, even in situations where it
could simplify statements or otherwise help the exposition. The following topics,
for example, could gain some clarity from a categorical formulation: Gelfand
duality1, universal constructions such as direct sums (= products), pullbacks,
free or amalgamated products and free algebras; tensor products and repre-
sentations; Hilbert modules and bimodules over C*-categories, strong Morita
equivalence, etc. Even standard monographs on more advanced topics, such as
Lance [20] on Hilbert modules, Raeburn-Williams [33] on Morita equivalence
and continuous trace C*-alegbras, or Wegge-Olsen [46] and Blackadar [1] on K-
theory, tend to avoid functorial thinking. There is certainly some justification
for this, but nonetheless one could gather the impression that many mathe-
maticians who enjoy working with C*-algebras don’t have much time for such
abstract nonsense as category theory – even when it could help.

In the published literature, I can find only two main research sub-fields which
provide a definite exception to this trend: one is the topic of C*-categories
(which are, roughly speaking, C*-algebras with several objects) and the other
one is KK-theory, also called Kasparov theory or bivariant K-theory – this is
an important but rather technical generalization of the topological K-theory of
C*-algebras. (Even the later topic though has been treated virtually without
any mention of categories for some 20 years since its invention, despite the fact
that KK-theory itself forms a category, and that it can be uniquely characterized
as a certain universal functor on separable C*-algebras!)

C*-categories

The first systematic study of C*-categories (focusing on the aspects of the the-
ory more related to von Neumann algebras) is Ghez-Lima-Roberts [11], and is
still quite enjoyable. In Doplicher-Roberts [8,9] one can find the original impor-
tant application of the theory; here C*-categories feature in what is now called
Doplicher-Roberts duality, which is a variant of Tannaka-Krein duality that al-
lows one to reconstruct any compact group G from its tensor C*-category of
finite dimensional unitary representations. The two latter articles contain much
categorical thinking, which however is presented in a rather non-categorical way
(e.g. there are virtually no commutative diagrams!); a gentler and more recent
exposition, which exploits category theory in a more standard way, is given by
Müger [32].

One role of C*-categories, also acknowledged in the previous references, is
that several kinds of representations of C*-algebras (various flavours of Hermi-
tian modules and Hilbert modules) assemble naturally into C*-categories. Be-
cause of this C*-categories often appear in connection with KK-theory (see next

1See [4] for a (too) detailed categorical treatment of Gelfand duality.
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section), which is defined in terms of Hilbert modules. Authors who have ex-
tended or applied the theory of C*-categories include Kandelaki [16–19], Mitch-
ener [28–31], Vasselli [42–44], Dell’Ambrogio [7], Zito [47], . . .

Although C*-categories are not mentioned, some of the early works on the
important theory of (strong) Morita equivalence of C*-algebras make some
(rather modest) use of categories and functors: see [2,34,35]. The recent mono-
graph [10], as its title promises, takes a more categorical approach.

KK-theory

A certain amount of categorical language is unavoidable when dealing with
topological K-theory of C*-algebras. Textbooks tend to minimize this, but
some classical papers such as Schochet’s series [37–40], introducing homotopy-
theoretical methods into the theory of C*-algebras, or the much-cited Schochet-
Rosenberg [36], make a generous use of it.

The literature on variations and generalizations of K-theory and KK-theory
of C*-algebras is nowadays very extensive, and much of it is quite categorical in
nature. Indeed, each of these theories is a functor on some specific category of
C*-algebras, often defined by some universal property or constructed by some
categorical machinery, such as localization. It would be quite hard to even par-
tially exhaust the existing literature, so we only single out the following papers
for their importance coupled with their categorical point of view: Higson [12],
which discovers the universal property of KK-theory; Higson [13], introducing
E-theory2; Meyer-Nest [23], where G-equivariant KK-theory is shown to form
a tensor triangulated category and where localization of categories is used to
reformulates the Baum-Connes conjecture.

Meyer and Nest have produced several more works where they systematically
exploit the fact that KK-theories are triangulated categories: [22, 24–27]. We
recommend the introductory articles [21] and [25], as well as Chapters 8 and 13
of the textbook [3], as starting points for these ideas. Other authors have
pursued this trend: Dell’Ambrogio [5, 6], Inassaridze-Kandelaki-Meyer [14, 15],
Voigt [45], . . .
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