Spans, bisets and blocks

Ivo Dell'Ambrogio

The Work of Serge Bouc 4-6 August 2021

Universidad Nacional Autónoma de México

UNIVERSIDAD DE GUANAJUATO

Thank you Serge for all the inspiration!

Recollection: ordinary Mackey functors

Fix a finite group G_0

Fix a commutative ring of coefficients k (= \mathbb{Z} , a nice local ring, a field ...)

Recall the "motivic" definition of classical Mackey functors:

Definition - [Dress 1973, Lindner 1976]

A (k-linear) G_0 -Mackey functor M is a k-linear representation

$$M \colon \operatorname{Span}_k(G_0\operatorname{-set}) \longrightarrow \operatorname{Mod}(k)$$

of the k-linear category of spans of G_0 -sets (the "Burnside category"):

$$\mathsf{Span}_{k}(G_{0}\operatorname{-set}) := \begin{cases} \mathsf{Obj} = \mathsf{finite } G_{0}\operatorname{-sets} \\ \mathsf{Hom}(X, Y) = k \otimes_{\mathbb{N}} \left\{ \begin{array}{c} X \swarrow^{Z} \searrow_{Y} & \mathsf{in } G_{0}\operatorname{-set} \right\}_{/\mathsf{iso}} \\ \mathsf{composition via pullbacks.} \end{cases}$$

Definition

A Mackey functor is **cohomological** if it satisfies the relation

$$ind_{H}^{G} \circ res_{H}^{G} = [G : H] id$$

between maps $M(G_0/G) \rightarrow M(G_0/G)$ for all subgroup inclusions $H \hookrightarrow G \leq G_0$.

Examples:

- group cohomology $G \mapsto H^n(G; V|_G)$ for any $V \in Mod(kG_0)$ and $n \ge 0$.
- Variations: homology, Tate cohomology, fixed point functors.

Non-examples:

- Burnside ring $G \mapsto B(G) = K_0(G\operatorname{-set}, \sqcup, \times)$.
- Representation ring $G \mapsto Rep(G) = K_0(mod(\mathbb{C}G), \oplus, \otimes_k)$.

Question: the cohomological relations are useful, but what do they mean?

Recollection: Yoshida's theorem

- $\operatorname{perm}_k(G_0) \subset \operatorname{mod}(kG_0)$: full subcategory of f.g. permutation kG_0 -modules.
- Observation: There is a full, essentially surjective, k-linear functor

$$\begin{array}{ll} \text{Yoshi}_{G_0} \colon & \operatorname{Span}_k(G_0 \text{-set}) \longrightarrow \operatorname{perm}_k(G_0) \\ & \left[\begin{array}{c} \alpha & Z & \beta \\ X & \overleftarrow{} & Y \end{array} \right] \longmapsto \left(\begin{array}{c} k[X] \rightarrow k[Y], \ x \mapsto \sum_{z \in \alpha^{-1}(x)} \beta(z) \end{array} \right). \end{array}$$

Then:

Yoshida's theorem – [Yoshida 1983], [Panchadcharam-Street 2007] A Mackey functor M is cohomological iff it factors (uniquely) through $Yoshi_{G_0}$. Equivalently, the kernel of $Yoshi_{G_0}$ is generated as a k-linear ideal of morphisms by the cohomological relations (for all $H \leq G \leq G_0$):

$$\underbrace{\left[\begin{array}{c}G_0/H\\G_0/H\end{array}\stackrel{\approx}{\longrightarrow}G_0/G\end{array}\right]}_{ind_H^G}\circ\underbrace{\left[\begin{array}{c}G_0/H\\G_0/G\\G_0/G\\F_{res_H^G}\end{array}\right]}_{res_H^G}=[G:H]\,id.$$

Now let us categorify:

```
k-modules \rightsquigarrow k-linear categories
homomorphisms \rightsquigarrow functors
equalities \rightsquigarrow (coherent) isomorphisms
functors \rightsquigarrow 2-functors
```

Naive idea: similarly to the *original* definition of Mackey functors [Green 1971], we want to axiomatize:

- families of k-linear categories $\mathcal{M}(G)$ for finite groups G
- with *k*-linear restriction, induction, conjugation functors between them (and possibly others: inflation functors ...)
- satisfying the most basic relations:
 - adjunctions between functors
 - (coherent) isomorphism versions of the various Mackey axioms.

gpd : the 2-category of finite groupoids, functors, natural isos ADD_k : the 2-category of (additive) *k*-linear categories, functors, natural transf.

```
Definition - [Balmer-D. 2020]
```

A (k-linear) Mackey 2-functor is a 2-functor

 $\mathcal{M}: gpd^{op} \longrightarrow ADD_k$

satisfying the following axioms:

- Additivity: $\mathcal{M}(G_1 \sqcup G_2) \xrightarrow{\sim} \mathcal{M}(G_1) \oplus \mathcal{M}(G_2)$ and $\mathcal{M}(\emptyset) \xrightarrow{\sim} 0$.
- Induction: Every 'restriction' i* := M(i) along a faithful functor i between groupoids admits both a left adjoint i and a right adjoint i.
- Base-Change / Mackey formula: the left and right adjunctions satisfy base-change with respect to pseudo-pullbacks (iso-comma squares).
- **()** Ambidexterity: There is a natural isomorphism $i_1 \cong i_*$ for all faithful *i*.

Explanations:

- Additivity axiom: groupoids decompose into groups G ≃ ∐_i G_i
 → the data of the 2-functor M is determined by what it does on groups.
- **Induction:** as for derivators, (co)induction i_1 and i_* are not part of the data.
- Ambidexterity: any isomorphisms i₁ ≃ i_{*} will do, so the axiom is easy to check in examples!

Fact (rectification theorem): the axioms imply there exist unique canonical isomorphisms θ_i : $i_1 \cong i_*$ fully compatible with given left and right adjunctions. Variations are possible:

• NB: The previous definition is actually more analogous to inflation functors, because it has 'restrictions' *f*^{*} along non-faithful morphisms *f*.

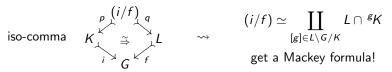
- For the 'correct' analogue of <u>global Mackey functor</u>: replace *gpd* by *gpd*_f (only allow faithful functors).
- For the 'local' version for fixed G_0 : replace gpd with $gpd_f/G_0 \simeq G_0$ -set (!).

Base-Change = canonical Mackey formulas

Base-Change axiom: an iso-comma square γ in *gpd* with two faithful sides defines, via \mathcal{M} and the left/right adjunctions, two mates $\gamma_!$ and $(\gamma^{-1})_*$:

The axiom requires both to be invertible: $f^*i_1 \cong q_1p^*$ and $f^*i_* \cong q_*p^*$. **Convenient fact:** via the rectification isos θ , they are mutual inverses!

Motivating example: for *i*, *f* two subgroup inclusions $K, L \leq G$



Note: the iso-comma groupoid (i/f) and the Base-Change isos are canonical, but the decomposition into groups depends on choices!

There is a Mackey 2-functor \mathcal{M} for each of the following families of abelian or triangulated categories $\mathcal{M}(G)$:

- In (linear) representation theory: $\mathcal{M}(G) = mod(kG), Mod(kG), D(kG), stmod(kG) (\iff only on gpd_f), ...$
- In formal representation theory:
 M(G) = Mack_k(G) or CoMack_k(G), categories of ordinary Mackey functors!
- In topology:

 $\mathcal{M}(G) = Ho(Sp^{G})$, the homotopy category of genuine G-spectra.

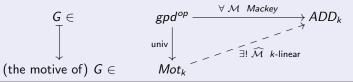
 In geometry (only defined 'locally' for a fixed group G₀): Fix X a locally ringed space (e.g. scheme) with a G₀-action. For G ≤ G₀, M(G) = Sh(X // G) the category of G-equivariant O_X-modules. Variants: take the derived category D(Sh(X // G)), or constructible sheaves, or coherent sheaves if X is a noetherian scheme, etc.

• . . .

The motivic approach

Theorem [Balmer-D. 2020]

There is a *k*-linear 2-category Mot_k of **Mackey 2-motives**, through which every *k*-linear Mackey 2-functor \mathcal{M} factors uniquely as a *k*-linear 2-functor:



Corollary (motivic decompositions)

The 2-cell endomorphism k-algebra $End_{Mot_k}(Id_G)$ of a group G acts on the category $\mathcal{M}(G)$, for every k-linear Mackey 2-functor \mathcal{M} . In particular, ring decompositions induce decompositions of the category:

$$1 = \underbrace{e_1 + \ldots + e_n}_{\text{orth. idemp. in } End(Id_G)} \xrightarrow{\widehat{\mathcal{M}}(-)} \mathcal{M}(G) = e_1 \mathcal{M}(G) \oplus \ldots \oplus e_n \mathcal{M}(G).$$

More concretely...

 Mot_k has concrete models (see later), in which we can compute!

Theorem [Balmer-D. 2020 (+ Bouc)]

 $End_{Mot_k}(Id_G)$ is isomorphic to the crossed Burnside k-algebra [Yoshida 1997]

$$B_k^c(G) = k \otimes_{\mathbb{Z}} K_0(G-sets/G^{conj}, \sqcup, a \text{ certain braided} \otimes)$$

or concretely: the finite free k-module generated by G-conjugacy classes of pairs (H, a) with $H \leq G$ and $a \in C_G(H)$, with multiplication given by:

$$(K, b) \cdot (H, a) = \sum_{[g] \in K \setminus G/H} (K \cap {}^{g}H, bgag^{-1}).$$

Example: consider $\mathcal{M}(G) = Mack_k(G)$, the category of Mackey functors for G. Well-known that the **Burnside algebra** $B_k(G) = k \otimes_{\mathbb{Z}} K_0(G$ -set) acts on it. But now the bigger ring $B_k^c(G) \supset B_k(G)$ with more idempotents also acts:

$$Mack_k(G) = \bigoplus_{e \in Prim \ Idem \ B_k^c(G)} e \cdot Mack_k(G).$$

Cohomological Mackey 2-functors

Definition [Balmer-D. 2021]

A Mackey 2-functor ${\mathcal M}$ is ${\mbox{cohomological}}$ if the composite

$$\mathsf{Id}_{\mathcal{M}(G)} \xrightarrow{\mathsf{unit}} i_* i^* \xrightarrow[]{\theta^{-1}} i_! i^* \xrightarrow[]{\mathsf{counit}} \mathsf{Id}_{\mathcal{M}(G)}$$

is multiplication by [G:H] for every subgroup inclusion $i: H \hookrightarrow G$.

Examples:

- All those from linear representation theory: Mod(kG), D(kG), stmod(kG),...
- Usual cohomological Mackey functors: $CoMack_k(G)$ (but not $Mack_k(G)$!)
- Equivariant sheaves: Sh(X ∥ G), D(X ∥ G), coh(X ∥ G),...

Why?

Theorem (Hom-decategorification)

If \mathcal{M} is a Mackey 2-functor and $U, V \in \mathcal{M}(G_0)$ two object at some G_0 , then

$$G \mapsto M(G) := \operatorname{Hom}_{\mathcal{M}(G)}(\operatorname{Res}_{G}^{G_{0}}U, \operatorname{Res}_{G}^{G_{0}}V)$$

is an ordinary G_0 -Mackey functor M. And if \mathcal{M} is cohomological then so is M!

Example:

• Cohomology: $H^n(G; V|_G) = \operatorname{Hom}_{D(kG)}(k, \Sigma^n V|_G)$ for any $V \in Mod(kG_0)$.

There are other uses, e.g.:

• Categorified Cartan-Eilenberg formula [Maillard 2021]: If \mathcal{M} is cohomological with idempotent-complete values, and k is a $\mathbb{Z}_{(p)}$ -algebra for a prime p, there is an equivalence

$$\forall G \qquad \mathcal{M}(G) \simeq \underset{G/P \in \mathcal{O}_{p}(G)}{\operatorname{bilim}} \mathcal{M}(P)$$

with the bilimit taken in ADD_k over the orbit category of *p*-subgroups of *G*.

• Green correspondence [Balmer-D. 2021] There is a Green-equivalence / Green-correspondence for every Mackey 2-functor, and it works especially well for cohomological ones.

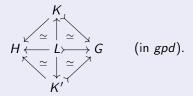
OK, but why? What is the sense of these cohomological relations? Same as before: *they generate the kernel of 'linearization of spans'*!

A concrete model of Mackey 2-motives

Mackey 2-motives via spans [Balmer-D. 2020]

The universal 2-category Mot_k can be realized as follows:

- Objects: finite groupoids (or formal direct summands thereof ...)
- 1-Morphisms: spans of functors with faithful right-leg: $H \stackrel{K}{\smile} G$
- 2-Morphisms: k-linearization of the monoids of iso-classes of diagrams



• Vertical and horizontal compositions: via iso-commas / pseudo-pullbacks.

Yoshida's theorem, categorified

*biperm*_k^{rf} \subset *Bimod* : bicategory of finite groupoids, permutation bimodules between them which are right-free, and equivariant maps (= natural transf.).

Yoshida's theorem [Balmer-D. 2021]

There is an equivalence of k-linear bicategories

 $Mot_k/\langle \text{cohomological relations} \rangle_{2-\text{cell ideal}} \xrightarrow{\sim} biperm_k^{rf}$.

The 2-functor realizing it 'linearizes' spans at the level of 1- and 2-cells:

- It maps $\underset{H}{\overset{f}{\longrightarrow}} K_{i} \xrightarrow{i} G$ to $k[G(i-,-) \otimes_{K} H(-,f-)] : H^{op} \times G \to Mod(k).$
- Vertically, it sends a span of equivariant maps to a sum-over-preimages homomorphism (exactly like *Yoshi*!).

Corollary

A cohomological Mackey 2-functor \mathcal{M} is the same as a k-linear pseudo-functor

 $\widehat{\mathcal{M}}$: $biperm_k^{rf} \to ADD_k$.

Blocks of group algebras

For each G, the quotient 2-functor of the theorem

 $Mot_k \longrightarrow biperm_k^{rf}$

specializes to the 2-cell endomorphism rings of Id_G , as the surjective ring map:

the crossed $\xrightarrow{} B_k^c(G) \xrightarrow{\rho_G} Z(kG)$ the center of the group algebra!

Some consequences:

- For every cohomological Mackey 2-functor M(G), the category M(G) splits according to the usual blocks := primitive idempotents of Z(kG).
 Note: the full kG doesn't necessarily act on M(G)!
- If k is a complete local ring (e.g. a field), then primitive idempotents can be lifted along ρ_G (by a general lifting result).
- For instance take Mack_k(G), not cohomological as a Mackey 2-functor. But for k a field, or k = Z^A_p etc., it still splits over the blocks of kG!
- But, which blocks have *non-zero* image on $\mathcal{M}(G)$? More work to be done...

Thank you for your attention!

Reference:

 Paul Balmer and Ivo Dell'Ambrogio. Cohomological Mackey 2-functors. Preprint 2021 (arXiv:2103.03974)

Further references on Mackey 2-functors:

- Paul Balmer and Ivo Dell'Ambrogio. Mackey 2-functors and Mackey 2-motives. EMS Monographs in Mathematics. Zürich (2020), viii+227
- Paul Balmer and Ivo Dell'Ambrogio. Green equivalences in equivariant mathematics. Math. Ann. (2021)
- Jun Maillard. A categorification of the Cartan-Eilenberg formula. Preprint 2021 (arXiv:2102.07554)
- Ivo Dell'Ambrogio. Green 2-functors. Preprint 2021 (arXiv:2107.09478)