A categorification of Yoshida's theorem for Mackey functors

Ivo Dell'Ambrogio

Workshop on Homotopy Theory and Group Theory 5-9 July 2021

Recollection: ordinary Mackey functors

Fix a finite group G_0 .

Fix a commutative ring of coefficients k (= \mathbb{Z} , a nice local ring, a field ...).

An ordinary (k-linear) G₀-Mackey functor M, is ...

- Original definition [Green 1971]:
 - ▶ a family of *k*-modules M(G) for all subgroups $G \leq G_0$
 - ▶ with restriction, induction and conjugation *k*-linear maps between them
 - satisfying many relations (functoriality, commutativity, Mackey formula...)
- 'Motivic' definition [Dress 1973, Lindner 1976]:
 - simply a k-linear functor

$$M: \operatorname{Span}_k(G_0\operatorname{-set}) \to \operatorname{Mod}(k)$$

▶ on the *k*-linear category of spans of *G*₀-sets:

$$\operatorname{Span}_{k}(G_{0}\operatorname{-set}) := \begin{cases} \operatorname{Obj} = \operatorname{finite} G_{0}\operatorname{-sets} \\ \operatorname{Hom}(X, Y) = k \otimes_{\mathbb{N}} \left\{ \begin{array}{c} X \swarrow^{Z} \searrow_{Y} & \operatorname{in} G_{0}\operatorname{-set} \right\} / \operatorname{isos} \\ \operatorname{composition via pullbacks.} \end{cases}$$

Definition

A Mackey functor is **cohomological** if it satisfies the relations

$$ind_{H}^{G} \circ res_{H}^{G} = [G : H] id$$

between maps $M(G) \rightarrow M(G)$ for all subgroup inclusions $H \hookrightarrow G \leq G_0$.

Examples:

- group cohomology $G \mapsto H^n(G; V|_G)$ for any $V \in Mod(kG_0)$ and $n \ge 0$.
- homology, Tate cohomology, fixed point functors.

Non-examples:

- Burnside ring $G \mapsto B(G) = K_0(G\operatorname{-set}, \sqcup)$.
- Representation ring $G \mapsto Rep(G) = K_0(mod(\mathbb{C}G), \oplus)$.

Question: the cohomological relations are useful, but what do they mean?

Recollection: Yoshida's theorem

- $\operatorname{perm}_k(G_0) \subset \operatorname{mod}(kG_0)$: full subcategory of f.g. permutation kG_0 -modules.
- Observation: There is a full, essentially surjective, k-linear (tensor) functor

$$\begin{array}{ll} \text{Yoshi}_{G_0} : & \text{Span}_k(G_0\text{-set}) \longrightarrow \text{perm}_k(G_0) \\ & \left[\begin{array}{c} \alpha & Z & \beta \\ X & & & & \\ \end{array} \right] \mapsto \left(k[X] \to k[Y], x \mapsto \sum_{z \in \alpha^{-1}(x)} \beta(z) \right). \end{array}$$

Then:

Yoshida's theorem – [Yoshida 1983], [Panchadcharam-Street 2007]

A Mackey functor M is cohomological iff it factors (uniquely) through $Yoshi_{G_0}$.

Equivalently, the map-kernel of $Yoshi_{G_0}$ is generated by the cohomological relations (for all $H \le G \le G_0$):

$$\underbrace{\begin{bmatrix} G_0/H \\ G_0/H \xrightarrow{\leq} G_0/G \end{bmatrix}}_{ind_H^G} \circ \underbrace{\begin{bmatrix} G_0/H \\ G_0/G \xrightarrow{\leftarrow} G_0/H \\ Fes_H^G \end{bmatrix}}_{res_H^G} = [G:H] id.$$

Now let us categorify!

• Naive idea: want to axiomatize the numerous

- families of k-linear categories $\mathcal{M}(G)$ for finite groups G
- with restriction, induction, conjugation (and possibly other kinds of) k-linear functors between them
- satisfying the most common relations, including:
 - * adjunctions between functors
 - * (coherent) isomorphism version of the various Mackey axioms.
- The actual axioms are inspired by:
 - Ordinary Mackey functors (applying K₀ should yield such!)
 - Additive derivators [Grothendieck 1980's]
 - Similar, but complementary, to the Mackey (∞, 1)-functors of [Barwick 2017]:
 - * he wants all higher coherences,
 - * we want non-invertible 2-cells.

Mackey 2-functors: the definition

gpd : the 2-category of finite groupoids, functors, natural isos ADD_k : the 2-category of (additive) *k*-linear categories, functors and nat. transf.

Definition [Balmer-D. 2020]

A (k-linear) Mackey 2-functor is a 2-functor

 $\mathcal{M}: gpd^{op} \longrightarrow ADD_k$

satisfying the following axioms:

- Additivity: $\mathcal{M}(G_1 \sqcup G_2) \xrightarrow{\sim} \mathcal{M}(G_1) \oplus \mathcal{M}(G_2)$ and $\mathcal{M}(\emptyset) \xrightarrow{\sim} 0$.
- Induction: Every 'restriction' i* := M(i) along a faithful functor between groupoids admits both a left adjoint i₁ and a right adjoint i₂.
- Base-Change: left and right adjunctions satisfy base-change for pseudo-pullbacks.
- **3** Ambidexterity: There is a natural isomorphism $i_{!} \cong i_{*}$ for all faithful *i*.

Explanations:

- Additivity axiom 1: groupoids decompose into groups G ≃ ∐_i G_i
 →→ the data of the 2-functor M is determined by what it does on groups.
- **Induction 2:** as for derivators, co/induction i_1 and i_* are not part of the data.
- **Ambidexterity 4:** any isomorphisms *i*_! ≅ *i*_{*} will do, so the axiom is easy to check in examples!

Fact (*rectification theorem***):** if axiom 4 holds, there exist unique canonical isomorphisms θ_i : $i_1 \cong i_*$ fully compatible with given left and right adjunctions.

Variations are possible, e.g.:

- NB: The previous definition is actually more analogous to *inflation functors*, because it has 'restrictions' *f*^{*} along non-faithful maps.
- For the 'proper' *global Mackey functor* analogue: replace *gpd* by *gpd*_f (only allow faithful functors).
- For the 'local' version for fixed G_0 : replace gpd with $\frac{gpd_f}{G_0} \simeq G_0$ -set (!).

There is a Mackey 2-functor \mathcal{M} for each of the following families of abelian or triangulated categories $\mathcal{M}(G)$:

• In (linear) representation theory:

 $\mathcal{M}(G) = mod \ kG, \ Mod \ kG, \ D(kG), \ stmod(kG) \ (\leftarrow only \ on \ gpd_f), ...$

In topology:

...

 $\mathcal{M}(G) = Ho(Sp^{G})$, the homotopy category of genuine G-spectra.

In noncommutative geometry:

 $\mathcal{M}(G) = KK^G$ or E^G , equivariant Kasparov theory or Higson-Connes E-theory of C*-algebras.

• In geometry (only defined 'locally' for a fixed group G_0): Fix X a locally ringed space (e.g. scheme) with a G_0 -action. For $G \le G_0$, $\mathcal{M}(G) = Sh(X/\!\!/G)$ the category of G-equivariant O_X -modules.

Variants: take the derived category D(Sh(X || G)), or constructible sheaves, or coherent sheaves if X is a noetherian scheme, etc.

Ivo Dell'Ambrogio Categorified Yoshida 8/16

The motivic approach

Theorem (Mackey 2-motives)

There is a *k*-linear 2-category Mot_k of **Mackey 2-motives**, through which every *k*-linear Mackey 2-functor M factors uniquely as a *k*-linear 2-functor:

Corollary (motivic decompositions)

The 2-cell endomorphism ring $End_{Mot_k}(Id_G)$ of a group G acts on the category $\mathcal{M}(G)$, for every k-linear Mackey 2-functor \mathcal{M} .

In particular, ring decompositions induce decompositions of the category:

$$1 = \underbrace{e_1 + \ldots + e_n}_{\longrightarrow} \quad \overset{\widehat{\mathcal{M}}(-)}{\Longrightarrow} \quad \mathcal{M}(G) = e_1 \mathcal{M}(G) \oplus \ldots \oplus e_n \mathcal{M}(G).$$

orth. idemp. in $End(Id_G)$

More concretely...

 Mot_k has concrete models (see later), in which we can compute!

Theorem [Balmer-D. 2021 (+ Bouc)]

 $End_{Mot_k}(Id_G)$ is isomorphic to the crossed Burnside k-algebra [Yoshida 1997]

$$B^{c}_{k}(G) = k \otimes_{\mathbb{Z}} K_{0}(G\text{-sets}/G^{conj}, \sqcup, \text{ a certain braided } \otimes)$$

or concretely: the finite free *k*-module generated by *G*-conjugacy classes of pairs (H, a) with $H \le G$ and $a \in C_G(H)$, with multiplication given by:

$$(K,b)\cdot (H,a) = \sum_{[g]\in K\setminus G/H} (K\cap {}^{g}H, bgag^{-1}).$$

Example $(k = \mathbb{Z})$: consider $\mathcal{M}(G) = Ho(Sp^G)$, on which the **Burnside ring** $B(G) = K_0(G\text{-set}) \cong End(S^0)$ acts because the sphere S^0 is the tensor unit. But now the bigger ring $B_{\mathbb{Z}}^c(G) \supset B(G)$ with more idempotents also acts:

$$Ho(Sp^{G}) = \bigoplus_{e \in Prim \ Idem(B^{c}_{\mathbb{Z}}(G))} e \cdot Ho(Sp^{G}).$$

Definition [Balmer-D. 2021]

A Mackey 2-functor ${\mathcal M} \text{ is } \textbf{cohomological} \text{ if the composite}$

$$\mathsf{Id}_{\mathcal{M}(G)} \xrightarrow{\mathsf{unit}} i_* i^* \xrightarrow[]{\theta^{-1}} i_! i^* \xrightarrow[]{\text{counit}} \mathsf{Id}_{\mathcal{M}(G)}$$

is multiplication by [G : H] for every subgroup inclusion $i: H \hookrightarrow G$.

Examples:

- All those from representation theory: *Mod*(*kG*), *D*(*kG*), *stmod*(*kG*),...
- But also equivariant sheaves: Sh(X // G), D(X // G), coh(X // G),... Why?

Theorem (Hom-decategorification)

If \mathcal{M} is a Mackey 2-functor and $U, V \in \mathcal{M}(G_0)$ two object at some G_0 , then

$$G \mapsto M(G) := \operatorname{Hom}_{\mathcal{M}(G)}(\operatorname{Res}_{G}^{G_{0}}U, \operatorname{Res}_{G}^{G_{0}}V)$$

is an ordinary G_0 -Mackey functor. If \mathcal{M} is cohomological then so is M!

Example:

• Cohomology: $H^n(G; V|_G) = \operatorname{Hom}_{D(kG)}(k, \Sigma^n V|_G)$ for any $V \in Mod(kG_0)$.

But why?

Categorified Cartan-Eilenberg formula [Maillard 2021]

Suppose \mathcal{M} is cohomological, *k*-linear for a $\mathbb{Z}_{(p)}$ -algebra *k*, and has idempotent-complete values. Then \mathcal{M} is a 2-sheaf for the *p*-local topology, that is:

$$\mathcal{M}(G) \simeq \underset{G/P \in O_p(G)}{\operatorname{bilim}} \mathcal{M}(P)$$

with the bilimit taken in ADD_k over the orbit category of *p*-subgroups of *G*.

OK, but why? What is the sense of the cohomological relations? Same as before: *they generate the kernel of 'linearization of spans'*!

Mackey 2-motives via spans [Balmer-D. 2020]

The universal 2-category *Mot_k* can be realized as follows:

- Objects: finite groupoids (or formal summands thereof ...)
- 1-Morphisms: spans of functors with faithful right-leg: $H < K_{A}$
- 2-Morphisms: k-linearization of the monoid of iso-classes of diagrams

Vertical and horizontal compositions: via iso-commas / pseudo-pullbacks.

Yoshida's theorem, categorified

*biperm*_k^{*r*} \subset *Bimod* : bicategory of finite groupoids, permutation bimodules between them which are right-free, and equivariant maps (= natural transf.).

Yoshida's theorem [Balmer-D. 2021]

There is an equivalence of k-linear bicategories

 $Mot_k/\langle \text{cohomological relations} \rangle_{2\text{-cell ideal}} \xrightarrow{\sim} biperm_k^{rf}$.

The pseudo-functor realizing it 'linearizes' spans at the level of 1- and 2-cells:

• It maps
$$H \xrightarrow{f} K \xrightarrow{i} G$$
 to $k[G(i-,-) \otimes_K H(-,f-)]: H^{op} \times G \to Mod(k).$

• Vertically, it sends a span of equivariant maps to a sum-over-preimages homomorphism (exactly like *Yoshi*!).

Corollary

A cohomological mackey 2-functor M is the same as a k-linear pseudo-functor

$$\widehat{\mathcal{M}}$$
: $biperm_k^{rf} \to ADD_k$.

Blocks of group algebras

For each G, the quotient pseudo-functor

 $Mot_k \longrightarrow biperm_k^{rf}$

specializes to the 2-cell endomorphism rings of G, as the surjective ring map:

the crossed
Burnside algebra
$$\longrightarrow \begin{array}{c} B_k^c(G) \xrightarrow{\rho_G} Z(kG) \\ (H,a) \mapsto \sum_{x \in G/H} xax^{-1} \end{array} \xrightarrow{\text{the center of}} \begin{array}{c} \text{the center of} \\ \text{the group algebra!} \end{array}$$

Some consequences:

- For every cohomological Mackey 2-functor, M(G) splits over the usual blocks := primitive idempotents of Z(kG).
 Note: the full kG doesn't always act on M(G)!
- If k is a complete local ring (e.g. a field), then primitive idempotents can be lifted along ρ_G (by a general lifting result).
- For instance, as soon as you 'massage' Ho(Sp^G) so it becomes linear over a complete local ring, e.g. Z[∧]_p, it splits over the blocks of kG!
- But, which blocks have non-zero image on $\mathcal{M}(G)$? More work to be done ...

Thank you for your attention!

Reference:

Paul Balmer and Ivo Dell'Ambrogio. Cohomological Mackey 2-functors. Preprint 2021 (arXiv:2103.03974)

Further references on Mackey 2-functors:

- Paul Balmer and Ivo Dell'Ambrogio. Mackey 2-functors and Mackey 2-motives. EMS Monographs in Mathematics. Zürich (2020), viii+227.
- Paul Balmer and Ivo Dell'Ambrogio. Green equivalences in equivariant mathematics. Math. Ann. (2021)
- Jun Maillard. A categorification of the Cartan-Eilenberg formula. Preprint 2021 (arXiv:2102.07554)
- Ivo Dell'Ambrogio. Green 2-functors. Preprint June 2021 (on my homepage)