A categorification of Yoshida's theorem for Mackey functors

Ivo Dell'Ambrogio

- Université

FACULTÉ DES SCIENCES ET TECHNOLOGIES
Département de Mathématiques

Workshop on Homotopy Theory and Group Theory 5-9 July 2021

Recollection: ordinary Mackey functors

Fix a finite group G_{0}.
Fix a commutative ring of coefficients k ($=\mathbb{Z}$, a nice local ring, a field ...).
An ordinary (\boldsymbol{k}-linear) \boldsymbol{G}_{0}-Mackey functor M, is ...

- Original definition [Green 1971]:
- a family of k-modules $M(G)$ for all subgroups $G \leq G_{0}$
- with restriction, induction and conjugation k-linear maps between them
- satisfying many relations (functoriality, commutativity, Mackey formula ...)
- 'Motivic' definition [Dress 1973, Lindner 1976]:
- simply a k-linear functor

$$
M: \operatorname{Span}_{k}\left(G_{0} \text {-set }\right) \rightarrow \operatorname{Mod}(k)
$$

- on the k-linear category of spans of G_{0}-sets:

$$
\operatorname{Span}_{k}\left(G_{0} \text {-set }\right):=\left\{\begin{array}{l}
\operatorname{Obj}=\text { finite } G_{0} \text {-sets } \\
\operatorname{Hom}(X, Y)=k \otimes_{\mathbb{N}}\left\{x^{k} \searrow_{Y} \quad \text { in } G_{0} \text {-set }\right\} / \text { isos } \\
\text { composition via pullbacks. }
\end{array}\right.
$$

Recollection: cohomological Mackey functors

Definition

A Mackey functor is cohomological if it satisfies the relations

$$
i n d_{H}^{G} \circ \operatorname{res}_{H}^{G}=[G: H] \text { id }
$$

between maps $M(G) \rightarrow M(G)$ for all subgroup inclusions $H \hookrightarrow G \leq G_{0}$.
Examples:

- group cohomology $G \mapsto H^{n}\left(G ;\left.V\right|_{G}\right)$ for any $V \in \operatorname{Mod}\left(k G_{0}\right)$ and $n \geq 0$.
- homology, Tate cohomology, fixed point functors.

Non-examples:

- Burnside ring $G \mapsto B(G)=K_{0}(G$-set, $\sqcup)$.
- Representation ring $G \mapsto \operatorname{Rep}(G)=K_{0}(\bmod (\mathbb{C} G), \oplus)$.

Question: the cohomological relations are useful, but what do they mean?

Recollection: Yoshida's theorem

- perm ${ }_{k}\left(G_{0}\right) \subset \bmod \left(k G_{0}\right)$: full subcategory of f.g. permutation $k G_{0}$-modules.
- Observation: There is a full, essentially surjective, k-linear (tensor) functor

$$
\begin{aligned}
& \text { Yoshi }_{G_{0}}: \quad \operatorname{Span}_{k}\left(G_{0}-\text { set }\right) \longrightarrow \operatorname{perm}_{k}\left(G_{0}\right)
\end{aligned}
$$

Then:

Yoshida's theorem - [Yoshida 1983], [Panchadcharam-Street 2007]

A Mackey functor M is cohomological iff it factors (uniquely) through Yoshi $_{G_{0}}$.
Equivalently, the map-kernel of Yoshi $_{G_{0}}$ is generated by the cohomological relations (for all $H \leq G \leq G_{0}$):

Mackey 2-functors: the idea

Now let us categorify!

- Naive idea: want to axiomatize the numerous
- families of k-linear categories $\mathcal{M}(G)$ for finite groups G
- with restriction, induction, conjugation (and possibly other kinds of) k-linear functors between them
- satisfying the most common relations, including:
* adjunctions between functors
* (coherent) isomorphism version of the various Mackey axioms.
- The actual axioms are inspired by:
- Ordinary Mackey functors (applying K_{0} should yield such!)
- Additive derivators [Grothendieck 1980's]
- Similar, but complementary, to the Mackey ($\infty, 1$)-functors of [Barwick 2017]:
* he wants all higher coherences,
\star we want non-invertible 2 -cells.

Mackey 2-functors: the definition

gpd : the 2-category of finite groupoids, functors, natural isos $A D D_{k}$: the 2-category of (additive) k-linear categories, functors and nat. transf.

Definition [Balmer-D. 2020]

A (k-linear) Mackey 2-functor is a 2 -functor

$$
\mathcal{M}: g p d^{o p} \longrightarrow A D D_{k}
$$

satisfying the following axioms:
(1) Additivity: $\mathcal{M}\left(G_{1} \sqcup G_{2}\right) \rightarrow \mathcal{M}\left(G_{1}\right) \oplus \mathcal{M}\left(G_{2}\right)$ and $\mathcal{M}(\emptyset) \rightarrow 0$.
(2) Induction: Every 'restriction' $i^{*}:=\mathcal{M}(i)$ along a faithful functor between groupoids admits both a left adjoint $i_{!}$and a right adjoint i_{*}.
(3) Base-Change: left and right adjunctions satisfy base-change for pseudo-pullbacks.
(1) Ambidexterity: There is a natural isomorphism $i_{!} \cong i_{*}$ for all faithful i.

Mackey 2-functors: comments

Explanations:

- Additivity axiom 1: groupoids decompose into groups $G \simeq \bigsqcup_{i} G_{i}$ \leadsto the data of the 2 -functor \mathcal{M} is determined by what it does on groups.
- Induction 2: as for derivators, co/induction i_{1} and i_{*} are not part of the data.
- Ambidexterity 4: any isomorphisms $i_{!} \cong i_{*}$ will do, so the axiom is easy to check in examples!

Fact (rectification theorem): if axiom 4 holds, there exist unique canonical isomorphisms $\theta_{i}: i_{!} \cong i_{*}$ fully compatible with given left and right adjunctions.
Variations are possible, e.g.:

- NB: The previous definition is actually more analogous to inflation functors, because it has 'restrictions' f^{*} along non-faithful maps.
- For the 'proper' global Mackey functor analogue: replace gpd by gpd (only allow faithful functors).
- For the 'local' version for fixed G_{0} : replace $g p d$ with ${g p d_{f}} / G_{0} \simeq G_{0}$-set (!).

Exemples of Mackey 2-functors

There is a Mackey 2 -functor \mathcal{M} for each of the following families of abelian or triangulated categories $\mathcal{M}(G)$:

- In (linear) representation theory:
$\mathcal{M}(G)=\bmod k G, \operatorname{Mod} k G, D(k G), \operatorname{stmod}(k G)\left(\leftarrow\right.$ only on $\left.g p d_{f}\right), \ldots$
- In topology:
$\mathcal{M}(G)=H o\left(S p^{G}\right)$, the homotopy category of genuine G-spectra.
- In noncommutative geometry:
$\mathcal{M}(G)=K K^{G}$ or E^{G}, equivariant Kasparov theory or Higson-Connes
E-theory of C^{*}-algebras.
- In geometry (only defined 'locally' for a fixed group G_{0}):

Fix X a locally ringed space (e.g. scheme) with a G_{0}-action.
For $G \leq G_{0}, \mathcal{M}(G)=\operatorname{Sh}(X / / G)$ the category of G-equivariant O_{X}-modules.
Variants: take the derived category $D(S h(X / / G))$, or constructible sheaves, or coherent sheaves if X is a noetherian scheme, etc.

- ...

The motivic approach

Theorem (Mackey 2-motives)

There is a k-linear 2-category Mot $_{k}$ of Mackey 2-motives, through which every k-linear Mackey 2 -functor \mathcal{M} factors uniquely as a k-linear 2 -functor:

Corollary (motivic decompositions)

The 2-cell endomorphism ring End $_{\text {Mot }_{k}}\left(\mathrm{Id}_{G}\right)$ of a group G acts on the category $\mathcal{M}(G)$, for every k-linear Mackey 2 -functor \mathcal{M}.
In particular, ring decompositions induce decompositions of the category:

$$
1=\underbrace{e_{1}+\ldots+e_{n}}_{\text {orth. idemp. in End(l(dd })} \stackrel{\widetilde{\mathcal{M}(-)}}{\Longrightarrow} \mathcal{M}(G)=e_{1} \mathcal{M}(G) \oplus \ldots \oplus e_{n} \mathcal{M}(G) .
$$

More concretely . . .

Mot $_{k}$ has concrete models (see later), in which we can compute!

Theorem [Balmer-D. 2021 (+ Bouc)]

End $_{\text {Motk }}\left(\mathrm{Id}_{G}\right)$ is isomorphic to the crossed Burnside \boldsymbol{k}-algebra [Yoshida 1997]

$$
B_{k}^{c}(G)=k \otimes_{Z} K_{0}\left(G \text {-sets } / G^{\text {conj }}, \sqcup, \text { a certain braided } \otimes\right)
$$

or concretely: the finite free k-module generated by G-conjugacy classes of pairs (H, a) with $H \leq G$ and $a \in C_{G}(H)$, with multiplication given by:

$$
(K, b) \cdot(H, a)=\sum_{[g] \in K \backslash G / H}\left(K \cap{ }^{g} H, \mathrm{bgag}^{-1}\right) .
$$

Example $(k=\mathbb{Z})$: consider $\mathcal{M}(G)=H o\left(S p^{G}\right)$, on which the Burnside ring $B(G)=K_{0}(G-$ set $) \cong \operatorname{End}\left(S^{0}\right)$ acts because the sphere S^{0} is the tensor unit. But now the bigger ring $B_{\mathbb{Z}}^{c}(G) \supset B(G)$ with more idempotents also acts:

$$
\operatorname{Ho}\left(S p^{G}\right)=\bigoplus_{e \in \operatorname{Prim}}^{\operatorname{ldem}_{\left(B_{Z}^{c}(G)\right)}} e \cdot \operatorname{Ho}\left(S p^{G}\right) .
$$

Cohomological Mackey 2-functors

Definition [Balmer-D. 2021]

A Mackey 2 -functor \mathcal{M} is cohomological if the composite

$$
\operatorname{ld}_{\mathcal{M}(G)} \xrightarrow{\text { unit }} i_{*} i^{*} \xrightarrow[\sim]{\theta^{-1}} i_{!} i^{*} \xrightarrow{\text { counit }} \operatorname{ld}_{\mathcal{M}(G)}
$$

is multiplication by $[G: H]$ for every subgroup inclusion $i: H \hookrightarrow G$.

Examples:

- All those from representation theory: $\operatorname{Mod}(k G), D(k G), \operatorname{stmod}(k G), \ldots$
- But also equivariant sheaves: $\operatorname{Sh}(X / / G), D(X / / G), \operatorname{coh}(X / / G), \ldots$ Why?

Theorem (Hom-decategorification)

If \mathcal{M} is a Mackey 2 -functor and $U, V \in \mathcal{M}\left(G_{0}\right)$ two object at some G_{0}, then

$$
G \mapsto M(G):=\operatorname{Hom}_{\mathcal{M}(G)}\left(\operatorname{Res}_{G}^{G_{0}} U, \operatorname{Res}_{G}^{G_{0}} V\right)
$$

is an ordinary $G_{0}-$ Mackey functor. If \mathcal{M} is cohomological then so is M !

Cohomological Mackey 2-functors

Example:

- Cohomology: $H^{n}\left(G ;\left.V\right|_{G}\right)=\operatorname{Hom}_{D(k G)}\left(k,\left.\Sigma^{n} V\right|_{G}\right)$ for any $V \in \operatorname{Mod}\left(k G_{0}\right)$. But why?

Categorified Cartan-Eilenberg formula [Maillard 2021]

Suppose \mathcal{M} is cohomological, k-linear for a $\mathbb{Z}_{(p)}$-algebra k, and has idempotentcomplete values. Then \mathcal{M} is a 2 -sheaf for the p-local topology, that is:

$$
\forall G \quad \mathcal{M}(G) \simeq \operatorname{bilim}_{G / P \in O_{P}(G)} \mathcal{M}(P)
$$

with the bilimit taken in $A D D_{k}$ over the orbit category of p-subgroups of G.

OK, but why? What is the sense of the cohomological relations? Same as before: they generate the kernel of 'linearization of spans'!

Mackey 2-motives, concretely

Mackey 2-motives via spans [Balmer-D. 2020]

The universal 2-category Mot_{k} can be realized as follows:

- Objects: finite groupoids (or formal summands thereof ...)
- 1-Morphisms: spans of functors with faithful right-leg: $H^{\kappa^{K}}$ 促
- 2-Morphisms: k-linearization of the monoid of iso-classes of diagrams

(in gpd).
- Vertical and horizontal compositions: via iso-commas / pseudo-pullbacks.

Yoshida's theorem, categorified

biperm $k_{k}^{r f} \subset$ Bimod : bicategory of finite groupoids, permutation bimodules between them which are right-free, and equivariant maps (= natural transf.).

Yoshida's theorem [Balmer-D. 2021]

There is an equivalence of k-linear bicategories

$$
\text { Mot }_{k} /\langle\text { cohomological relations }\rangle_{2 \text {-cell ideal }} \xrightarrow{\sim} \text { biperm }_{k}^{r f} .
$$

The pseudo-functor realizing it 'linearizes' spans at the level of 1 - and 2-cells:

- It maps $H^{\leftarrow} \stackrel{K^{K}}{\stackrel{i}{\leftrightarrows}} G$ to $k\left[G(i-,-) \otimes_{K} H(-, f-)\right]: H^{o p} \times G \rightarrow \operatorname{Mod}(k)$.
- Vertically, it sends a span of equivariant maps to a sum-over-preimages homomorphism (exactly like Yoshi!).

Corollary

A cohomological mackey 2 -functor \mathcal{M} is the same as a k-linear pseudo-functor

$$
\widehat{\mathcal{M}}: \text { biperm }_{k}^{r f} \rightarrow A D D_{k} .
$$

Blocks of group algebras

For each G, the quotient pseudo-functor

$$
\text { Mot }_{k} \longrightarrow \text { biperm }_{k}^{r f}
$$

specializes to the 2 -cell endomorphism rings of G, as the surjective ring map:

$$
\begin{aligned}
& \text { the crossed } \leadsto B_{k}^{c}(G) \xrightarrow{\rho_{G}} Z(k G) \\
& \text { Burnside algebra } \\
& (H, a) \mapsto \sum_{x \in G / H} x a x^{-1} \\
& \text { the center of } \\
& \text { the group algebra! }
\end{aligned}
$$

Some consequences:

- For every cohomological Mackey 2-functor, $\mathcal{M}(G)$ splits over the usual blocks := primitive idempotents of $Z(k G)$.
Note: the full $k G$ doesn't always act on $\mathcal{M}(G)$!
- If k is a complete local ring (e.g. a field), then primitive idempotents can be lifted along ρ_{G} (by a general lifting result).
- For instance, as soon as you 'massage' $\mathrm{Ho}\left(S p^{G}\right)$ so it becomes linear over a complete local ring, e.g. \mathbb{Z}_{p}^{\wedge}, it splits over the blocks of $k G$!
- But, which blocks have non-zero image on $\mathcal{M}(G)$? More work to be done ...

Thank you for your attention!

Reference:

(1) Paul Balmer and Ivo Dell'Ambrogio. Cohomological Mackey 2-functors. Preprint 2021 (arXiv:2103.03974)

Further references on Mackey 2-functors:

(1) Paul Balmer and Ivo Dell'Ambrogio. Mackey 2-functors and Mackey 2-motives. EMS Monographs in Mathematics. Zürich (2020), viii+227.
(2) Paul Balmer and Ivo Dell'Ambrogio. Green equivalences in equivariant mathematics. Math. Ann. (2021)
(0) Jun Maillard. A categorification of the Cartan-Eilenberg formula. Preprint 2021 (arXiv:2102.07554)
(1) Ivo Dell'Ambrogio. Green 2-functors. Preprint June 2021 (on my homepage)

