The Green correspondence in algebraic geometry

Ivo Dell'Ambrogio

Université de Lille

Séminaire "Variétés Rationnelles"
Paris, 29 May 2020

References:

- Paul Balmer and Ivo Dell'Ambrogio. Green equivalences in equivariant mathematics. Preprint 2020, 25 pages (arXiv:2001.10646).
- Paul Balmer and Ivo Dell'Ambrogio. Mackey 2-functors and Mackey 2-motives. Preprint 2019, 209 pages (arXiv:1808.04902). To appear in EMS Monographs in Mathematics.

1. The Green correspondence

A classical result in modular representation theory of finite groups:

- k a field of characteristic $p>0$
- G a finite group
- For M an indecomposable $k G$-module \rightsquigarrow the vertex of M : the minimal subgroup $Q \leq G$ such that $M \leq \operatorname{Ind}_{Q}^{G}(N)$ for some $k Q$-module $N \quad$ (this Q is a p-group, unique up to conjugation)

The Green correspondence (J. A. Green 1958, 1964)
For all $Q \leq H \leq G$ with $N_{G}(Q) \subseteq H$, there is a bijection

where N and M correspond iff $N \leq \operatorname{Res}_{H}^{G}(M)$ iff $M \leq \operatorname{Ind}_{H}^{G}(N)$.

2. The classical Green equivalence

Notations:

- $\mathcal{M}(G):=k G$-mod, the category of finitely generated $k G$-modules
- $\mathcal{M}(G ; S):=\{M \mid M \leq \operatorname{Ind}(N)$ for some $N \in \mathcal{M}(S)\} \stackrel{\text { full }}{\subset} \mathcal{M}(G)$ the full subcategory of S-objects, for $S \leq G$ a subgroup
- $\mathcal{M}(G ; \mathbb{S})$ defined similarly for a set \mathbb{S} of subgroups of G

The Green equivalence (J. A. Green 1974)
For $Q \leq H \leq G$ as before, there is an equivalence of "additive quotients"

$$
\frac{\mathcal{M}(H ; Q)}{\mathcal{M}(H ; \mathbb{X})} \underset{\text { "Res" }}{\stackrel{\text { Ind }}{\sim}} \frac{\mathcal{M}(G ; Q)}{\mathcal{M}(G ; \mathbb{X})}
$$

where $\mathbb{X}=\mathbb{X}(G, H, Q):=\left\{Q \cap g Q g^{-1} \mid g \in G \backslash H\right\}$.

3. The classical Green equivalence: explanations

Recall additive quotient categories:

- Given \mathcal{A} an additive category, $\mathcal{B} \subset \mathcal{A}$ full additive subcategory
- $\mathcal{A} / \mathcal{B}$ or $\frac{\mathcal{A}}{\mathcal{B}}$: category with same objects as \mathcal{A} and Hom groups:

$$
\mathcal{A} / \mathcal{B}(X, Y)=\frac{\mathcal{A}(X, Y)}{\{\varphi: X \rightarrow Y \mid \exists \underbrace{X} Z^{\varphi} Y} \text { with } Z \in \mathcal{B}\}
$$

- Example: $k G$-mod $:=k G$-mod/kG-proj, the stable module category Not abelian, but a triangulated category!
- For similar reasons, the 'relative stable categories' in the Green equivalence are also triangulated

4. Green equiv + Krull-Schmidt \Rightarrow Green corr

- $k G-\bmod$ is a Krull-Schmidt category, in particular:
\forall object $M \quad \exists$ decomposition $M \simeq M_{1} \oplus \cdots \oplus M_{n}$ with M_{1}, \ldots, M_{n} indecomposable and unique (up to iso and a perm.)
- Property preserved by taking subcategories and quotient categories
- The Green equivalence preserves vertices
\Rightarrow can derive the Green correspondence from the Green equivalence:

5. Generalizations

Note:

- The statement of the Green eq. makes sense as soon as we have: add cats $\mathcal{M}(S)(S \leq G) \&$ add functors Ind, Res $\rightsquigarrow \mathcal{M}(G ; Q)$ etc.
- Green eq. \Rightarrow Green corr. always, as soon as the $\mathcal{M}(S)$ are all KS
- Can prove the Green eq. for other categories $\mathcal{M}(S)=$??

Previous results:
(1) Benson-Wheeler 2001: $\mathcal{M}(G)=k G$-Mod, ∞-dim representations
(2) Carlson-Wang-Zhang 2020: $\mathcal{M}(G)=$ derived and homotopy categories of complexes (variously bounded) of $k G$-modules Note: $\mathcal{M}(G)=D^{b}(k G$-mod) is Krull-Schmidt \Rightarrow a Green correspondence for indecomposable complexes!

6. The 'right' context

Our contribution: use the setting of Mackey 2-functors!

- Idea: the proofs really only need additive categories $\mathcal{M}(S)(S \leq G)$, adjoint induction and restriction functors, the Mackey formula!
- More precisely:

Definition (Balmer-Dell'Ambrogio 2019)

A Mackey 2-functor for G is a 2-functor $\mathcal{M}:\left(g p d^{f} / G\right)^{o p} \rightarrow A D D$ satisfying the axioms:
(1) Additivity: $\mathcal{M}\left(G_{1} \sqcup G_{2}\right) \simeq \mathcal{M}\left(G_{1}\right) \times \mathcal{M}\left(G_{2}\right)$
(2) Induction: for $K \stackrel{i}{\hookrightarrow} L \leq G$ faithful (e.g. a subgroup inclusion), the functor $\operatorname{Res}_{K}^{L}:=\mathcal{M}(i): \mathcal{M}(L) \rightarrow \mathcal{M}(K)$ has a right-and-left adjoint Ind $_{K}^{L}$
(3) The Mackey formula: Both the left and the right adjunctions satisfy Base-Change for iso-comma squares in $g p d^{f} / G$ (\simeq pullbacks in G-sets).

7. The 'right' result

The general Green equivalence (Balmer-D. 2020)
\mathcal{M} any Mackey 2 -functor for G, and $Q \leq H \leq G$ any subgroups.
Then the induction functor induces an equivalence of categories

$$
\left(\frac{\mathcal{M}(H ; Q)}{\mathcal{M}(H ; \mathbb{X})}\right)^{\natural} \xrightarrow[\sim]{\text { Ind }}\left(\frac{\mathcal{M}(G ; Q)}{\mathcal{M}(G ; \mathbb{X})}\right)^{\natural}
$$

where $\mathbb{X}=\left\{Q \cap^{g} Q \mid g \in G \backslash H\right\}$ and $(-)^{\natural}$ is idempotent-completion.
Remarks:

- No conditions on coefficients, or on $N_{G}(Q)$!
- No idempotent-completion needed in any of the examples, for different reasons: (e.g. if the $\mathcal{M}(S)$ are KS or nicely triangulated)
- In the Krull-Schmidt case, we always get the Green correspondence

8. Mackey 2-functors are everywhere!

There is a Mackey 2-functor \mathcal{M} for G for each of the following families of abelian or triangulated categories $\mathcal{M}(S)$ (for all $S \leq G$):
(1) In (linear) representation theory:
$\mathcal{M}(S)=k S$-mod, $k S$-Mod, $D^{b}(k S-\bmod), D(k S-M o d), k S-\bmod \ldots$
(2) In stable homotopy theory:
$\mathcal{M}(S)=H o\left(S p^{S}\right)$, the homotopy category of genuine S-spectra
(3) In noncommutative topology / operator algebras:
$\mathcal{M}(S)=K K^{S}$ or E^{S}, equivariant Kasparov theory or E-theory
(9) In geometry:

Fix X a locally ringed space (e.g. scheme) with a G-action $\mathcal{M}(S)=S h(X / / S)$ or $D(S h(X / / S))$, S-equivariant sheaves

9. Application to equivariant sheaves

In algebraic geometry:

- X a scheme
- Assume G acts on X (hence each $S \leq G$ too)
- There is a Mackey 2 -functor \mathcal{M} such that $\mathcal{M}(S)=\operatorname{Coh}(X / / S)$, the category of S-equivariant sheaves of coherent $\mathcal{O}_{\boldsymbol{X}}$-modules:
$M=\left(M,\left\{\gamma_{g}: M \xrightarrow{\sim} g^{*}(M)\right\}_{g \in S}\right)$ with $\left\{\begin{array}{l}M \in \operatorname{Coh}(X) \\ \text { cocycle condition on } \gamma_{g} \text { 's }\end{array}\right.$
- For $X=\operatorname{Spec}(k)$ we have $\operatorname{Coh}(X / / S)=k S$-mod
- We obtain the Green equivalence

$$
\frac{\operatorname{Coh}(X / / H ; Q)}{\operatorname{Coh}(X / / H ; \mathbb{X})} \xrightarrow[\sim]{\text { Ind }} \frac{\operatorname{Coh}(X / / G ; Q)}{\operatorname{Coh}(X / / G ; \mathbb{X})}
$$

and similarly with $\mathrm{Qcoh}(X / / S), D(Q \operatorname{coh}(X / / S)), \ldots$

10. Application to equivariant sheaves

For X nice enough the categories $\operatorname{Coh}(X / / S)$, and thus $\mathrm{D}^{\mathrm{b}}(\operatorname{Coh}(X / / S))$, are Krull-Schmidt \rightsquigarrow get the correspondence:

Theorem (The 'global' Green correspondence)
G a finite group acting on a regular proper (e.g. smooth projective) variety X over k, a field of characteristic $p>0$ dividing the order of G.

Then for every p-subgroup $Q \leq G$ and every $H \leq G$ containing $N_{G}(Q)$:
indec. H-equiv. coherent \mathcal{O}_{X}-modules with vertex Q
indec. G-equiv. coherent \mathcal{O}_{X}-modules with vertex Q

- The same holds with complexes in $D^{b}(\operatorname{Coh}(X / / S))$ instead of sheaves
- With $X=\operatorname{Spec}(k)$ we recover all previous results $)$

