The Green correspondence in algebraic geometry

Ivo Dell'Ambrogio Université de Lille

Séminaire "Variétés Rationnelles" Paris, 29 May 2020

References:

- Paul Balmer and Ivo Dell'Ambrogio. *Green equivalences in equivariant mathematics*. Preprint 2020, 25 pages (arXiv:2001.10646).
- Paul Balmer and Ivo Dell'Ambrogio. Mackey 2-functors and Mackey 2-motives. Preprint 2019, 209 pages (arXiv:1808.04902). To appear in EMS Monographs in Mathematics.

1. The Green correspondence

A classical result in modular representation theory of finite groups:

- k a field of characteristic p > 0
- G a finite group
- For M an indecomposable kG-module → the vertex of M: the minimal subgroup Q ≤ G such that M ≤ Ind^G_Q(N) for some kQ-module N (this Q is a p-group, unique up to conjugation)

The Green correspondence (J. A. Green 1958, 1964)

For all $Q \leq H \leq G$ with $N_G(Q) \subseteq H$, there is a bijection

where N and M correspond iff $N \leq \operatorname{Res}_{H}^{G}(M)$ iff $M \leq \operatorname{Ind}_{H}^{G}(N)$.

Notations:

- $\mathcal{M}(G) := kG$ -mod, the category of finitely generated kG-modules
- $\mathcal{M}(G; S) := \{M \mid M \leq \operatorname{Ind}(N) \text{ for some } N \in \mathcal{M}(S)\} \stackrel{\text{full}}{\subset} \mathcal{M}(G)$ the full subcategory of **S**-objects, for $S \leq G$ a subgroup
- $\mathcal{M}(G; \mathbb{S})$ defined similarly for a set \mathbb{S} of subgroups of G

The Green equivalence (J. A. Green 1974)

For $Q \leq H \leq G$ as before, there is an equivalence of "additive quotients"

$$\frac{\mathcal{M}(H; Q)}{\mathcal{M}(H; \mathbb{X})} \xrightarrow[]{\sim} \frac{\operatorname{Ind}}{\underset{\text{"Res"}}{\sim}} \frac{\mathcal{M}(G; Q)}{\mathcal{M}(G; \mathbb{X})}$$

where $\mathbb{X} = \mathbb{X}(G, H, Q) := \{Q \cap gQg^{-1} \mid g \in G \smallsetminus H\}.$

Recall additive quotient categories:

- $\bullet\,$ Given ${\mathcal A}$ an additive category, ${\mathcal B}\subset {\mathcal A}$ full additive subcategory
- \mathcal{A}/\mathcal{B} or $\frac{\mathcal{A}}{\mathcal{B}}$: category with same objects as \mathcal{A} and Hom groups:

$$\mathcal{A}/\mathcal{B}(X,Y) = \frac{\mathcal{A}(X,Y)}{\left\{\varphi \colon X \to Y \mid \exists X \xrightarrow{\varphi} Y \text{ with } Z \in \mathcal{B}\right\}}$$

- Example: *kG*-mod := *kG*-mod/*kG*-proj, the stable module category Not abelian, but a triangulated category!
- For similar reasons, the 'relative stable categories' in the Green equivalence are also triangulated

4. Green equiv + Krull-Schmidt \Rightarrow Green corr

• kG-mod is a Krull-Schmidt category, in particular:

 \forall object $M = \exists$ decomposition $M \simeq M_1 \oplus \cdots \oplus M_n$ with M_1, \ldots, M_n indecomposable and unique (up to iso and a perm.)

- Property preserved by taking subcategories and quotient categories
- The Green equivalence preserves vertices
 ⇒ can derive the Green correspondence from the Green equivalence:

Note:

- The statement of the Green eq. makes sense as soon as we have:
 add cats M(S) (S ≤ G) & add functors Ind, Res → M(G; Q) etc.
- ullet Green eq. \Rightarrow Green corr. always, as soon as the $\mathcal{M}(S)$ are all KS
- Can prove the Green eq. for other categories $\mathcal{M}(S) = \ref{eq:model}$

Previous results:

- **Q** Benson-Wheeler 2001: $\mathcal{M}(G) = kG$ -Mod, ∞ -dim representations
- Carlson-Wang-Zhang 2020: M(G) = derived and homotopy categories of complexes (variously bounded) of kG-modules Note: M(G) = D^b(kG-mod) is Krull-Schmidt ⇒ a Green correspondence for indecomposable complexes!

6. The 'right' context

Our contribution: use the setting of Mackey 2-functors!

- Idea: the *proofs* really only need additive categories $\mathcal{M}(S)$ ($S \leq G$), adjoint induction and restriction functors, the Mackey formula!
- More precisely:

Definition (Balmer-Dell'Ambrogio 2019)

A Mackey 2-functor for G is a 2-functor $\mathcal{M}: (gpd^f/G)^{op} \to ADD$ satisfying the axioms:

- **3** Induction: for $K \stackrel{'}{\hookrightarrow} L \leq G$ faithful (e.g. a subgroup inclusion), the functor $\operatorname{Res}_{K}^{L} := \mathcal{M}(i) \colon \mathcal{M}(L) \to \mathcal{M}(K)$ has a right-and-left adjoint $\operatorname{Ind}_{K}^{L}$
- ③ The Mackey formula: Both the left and the right adjunctions satisfy Base-Change for iso-comma squares in gpd^f/G (≃ pullbacks in G-sets).

The general Green equivalence (Balmer-D. 2020)

 \mathcal{M} any Mackey 2-functor for G, and $Q \leq H \leq G$ any subgroups. Then the induction functor induces an equivalence of categories

$$\left(\frac{\mathcal{M}(H;Q)}{\mathcal{M}(H;\mathbb{X})}\right)^{\natural} \xrightarrow{\operatorname{Ind}} \left(\frac{\mathcal{M}(G;Q)}{\mathcal{M}(G;\mathbb{X})}\right)^{\natural}$$

where $\mathbb{X} = \{Q \cap {}^{g}Q \mid g \in G \smallsetminus H\}$ and $(-)^{\natural}$ is idempotent-completion.

Remarks:

- No conditions on coefficients, or on $N_G(Q)$!
- No idempotent-completion needed in any of the examples, for different reasons: (e.g. if the *M*(*S*) are KS or nicely triangulated)
- In the Krull-Schmidt case, we always get the Green correspondence

There is a Mackey 2-functor \mathcal{M} for G for each of the following families of abelian or triangulated categories $\mathcal{M}(S)$ (for all $S \leq G$):

- In (linear) representation theory: $\mathcal{M}(S) = kS \text{-mod}, kS \text{-Mod}, D^b(kS \text{-mod}), D(kS \text{-Mod}), kS \text{-mod} \dots$
- 2 In stable homotopy theory: $\mathcal{M}(S) = Ho(Sp^S)$, the homotopy category of genuine S-spectra
- In noncommutative topology / operator algebras:
 \$\mathcal{M}(S) = \mathcal{K} \mathcal{K}^S\$ or \$\mathcal{E}^S\$, equivariant Kasparov theory or E-theory
- In geometry: Fix X a locally ringed space (e.g. scheme) with a G-action $\mathcal{M}(S) = Sh(X//S)$ or D(Sh(X//S)), S-equivariant sheaves

In algebraic geometry:

- X a scheme
- Assume G acts on X (hence each $S \leq G$ too)

• There is a Mackey 2-functor \mathcal{M} such that $\mathcal{M}(S) = \operatorname{Coh}(X/\!\!/S)$, the category of **S**-equivariant sheaves of coherent \mathcal{O}_X -modules: $M = (M, \{\gamma_g \colon M \xrightarrow{\sim} g^*(M)\}_{g \in S}) \text{ with } \begin{cases} M \in \operatorname{Coh}(X) \\ \text{cocycle condition on } \gamma_g \text{'s} \end{cases}$

• For $X = \operatorname{Spec}(k)$ we have $\operatorname{Coh}(X/\!/S) = kS$ -mod

• We obtain the Green equivalence

$$\frac{\operatorname{Coh}(X/\!\!/ H; Q)}{\operatorname{Coh}(X/\!\!/ H; \mathbb{X})} \xrightarrow{\operatorname{Ind}} \frac{\operatorname{Coh}(X/\!\!/ G; Q)}{\operatorname{Coh}(X/\!\!/ G; \mathbb{X})}$$

and similarly with $\operatorname{Qcoh}(X/\!/S)$, $D(\operatorname{Qcoh}(X/\!/S))$, ...

10. Application to equivariant sheaves

For X nice enough the categories $\operatorname{Coh}(X/\!/S)$, and thus $\operatorname{D^b}(\operatorname{Coh}(X/\!/S))$, are Krull-Schmidt \rightsquigarrow get the correspondence:

Theorem (The 'global' Green correspondence)

G a finite group acting on a regular proper (e.g. smooth projective) variety X over k, a field of characteristic p > 0 dividing the order of *G*.

Then for every p-subgroup $Q \leq G$ and every $H \leq G$ containing $N_G(Q)$:

- The same holds with complexes in $D^b(Coh(X/S))$ instead of sheaves
- With $X = \operatorname{Spec}(k)$ we recover all previous results \bigcirc