The spectrum of equivariant Kasparov theory for cyclic groups of prime order

Ivo Dell'Ambrogio Université de Lille

Quantum Groups Seminar Copenhagen, 30 November 2020

Reference: Ivo Dell'Ambrogio and Ralf Meyer, arXiv:2009.05424 (Sept 2020)

1. The equivariant Kasparov category

 ${\it G}$: a 2nd countable locally compact group

 $\rightsquigarrow KK^{G}$: the *G*-equivariant Kasparov category (Kasparov 1988)

- Objects: separable complex G-C*-algebras
- Hom sets: Hom(A, B) = KK₀^G(A, B)
 Kasparov cycles /~, or generalized equiv. *-homomorphisms, or ...
- composition & a symmetric monoidal structure: 'Kasparov product'

(Meyer-Nest 2006)

KK^G is a **tensor triangulated category**, that is:

- additive category: can sum morphisms and objects (usual direct sums)
- suspension functor $\Sigma \colon A \mapsto C_0(\mathbb{R}) \otimes A$ (invertible by Bott: $\Sigma^2 \cong \mathrm{Id}$)
- triangles: $\Sigma C \rightarrow A \rightarrow B \rightarrow C$ (mapping cones / cpc-split extensions)
- bi-exact tensor product: $A \otimes_{\min} B$ with diagonal G-action

This algebraic structure captures for example:

• Homological algebra: get LES from triangles $\Sigma C \xrightarrow{\partial} A \to B \to C$:

 $\ldots \rightarrow \textit{Hom}(D, \Sigma C) \stackrel{\partial_*}{\rightarrow} \textit{Hom}(D, A) \rightarrow \textit{Hom}(D, B) \rightarrow \textit{Hom}(D, C) \stackrel{\partial_*}{\rightarrow} \ldots$

 $\ldots \leftarrow \textit{Hom}(\Sigma C, D) \xleftarrow{\partial^*}\textit{Hom}(A, D) \leftarrow \textit{Hom}(B, D) \leftarrow \textit{Hom}(C, D) \xleftarrow{\partial^*} \ldots$

• Bootstrap-like constructions: S any set of objects: Thick(S) := closure of S under Σ^{\pm} , sums, mapping cones, retracts, and isomorphic objects.

Loc(S) := as above + closed under *infinite* direct sums.

Both constructions yield (full) triangulated subcategories.

Thick_{\otimes}(S), Loc_{\otimes}(S): variants closed under tensoring with any objects \rightsquigarrow these are (thick, localizing) *tensor ideals*.

3. The Balmer spectrum

Can also 'do geometry':

(Balmer 2005)

Every (essentially small) tensor triangulated category \mathcal{T} admits a 'universal support theory', namely:

- A topological space $Spc(\mathcal{T})$, the **spectrum** of \mathcal{T} .
- For each $A \in \mathcal{T}$, a closed subset $supp(A) \subset Spc(\mathcal{T})$, its support.
- This data yields a rough geometric classification of objects: $\operatorname{Thick}_{\otimes}(A) = \operatorname{Thick}_{\otimes}(B) \Leftrightarrow \operatorname{supp}(A) = \operatorname{supp}(B)$

Examples:

 (Thomason 1997) V an quasi-compact and quasi-separated scheme, *T* = D^{perf}(V) → Spc(*T*) ≅ V. In particular for V = Spec(R) → Spc(D^b(proj-R)) ≅ Spec(R).

 (Benson-Carlson-Rickard 1997) G a finite group, char(k) | |G|,

$$=$$
 stmod(kG) \rightsquigarrow Spc(\mathcal{T}) \cong Proj($H^*(G; k)$).

4. So, what about $\mathcal{T} = KK^G$?

A very nice characterisation of the Baum-Connes assembly map:

(Meyer-Nest 2006)

The inclusion functor of the following subcategory

$$\mathcal{CI} := \mathsf{Loc}_{(\otimes)} \Big(\bigcup_{H \leq G \text{ compact}} \mathsf{Ind}_{H}^{G} (\mathsf{KK}^{H}) \Big) \quad \subset \quad \mathsf{KK}^{G}$$

has a right adjoint $A \mapsto \tilde{A} \in C\mathcal{I}$. Applying $K_*(G \ltimes -)$ to the counit of adjunction $\varepsilon_A \colon \tilde{A} \to A$ we get the Baum-Connes assembly map with coefficients in $A \in KK^G$.

Tantalizingly:

(D. 2008)

If the natural map $(\operatorname{Res}_{H}^{G})_{H}^{*}$: $\bigcup_{H \text{ cpt}} \operatorname{Spc}(KK^{H}) \to \operatorname{Spc}(KK^{G})$ is surjective, we have $\mathcal{CI} = KK^{G}$, hence $\tilde{A} \xrightarrow{\simeq} A$, hence BC holds for G and all A.

5. Towards to spectrum of Kasparov theory

Unfortunately, the computation of $Spc(KK^G)$ seems well out of reach! Only general result known:

(Balmer 2010)

For any (essentially small) tensor triangulated $\mathcal{T},$ there is a natural continuous map

 $\rho_{\mathcal{T}} \colon \mathsf{Spc}(\mathcal{T}) \longrightarrow \mathsf{Spec}(\mathsf{End}_{\mathcal{T}}(\mathbf{1}))$

to the Zariski spectrum of the endomorphism ring of the tensor unit object 1. It is surjective as soon as $\mathsf{End}_\mathcal{T}(1)_*$ is noetherian.

Corollary

For G a compact Lie group, we have a surjective map

$$\operatorname{Spc}(KK^G) \longrightarrow \operatorname{Spec}(\mathsf{R}_{\mathbb{C}}(G))$$

onto the Zariski spectrum of its complex character ring.

6. Bootstrap categories are nicer

Main technical difficulties:

- *KK^G* has no good generation properties.
- KK^G has (countable) infinite direct sums, but Spc(-) is best for (sub-)categories of compact and dualizable objects A: those which
 - satisfy $Hom(A, \bigoplus_i B_i) \cong \bigoplus_i Hom(A, B_i)$
 - ▶ and have a tensor-dual A^{\vee} : $Hom(A \otimes B, C) \cong Hom(B, A^{\vee} \otimes C)$.

Definition: G-cell algebras

 $Cell^{G} := Loc(\{C(G/H) \colon H \leq G \text{ a closed subgroup}\}) \quad \subset KK^{G}$

- Cell¹ is the usual Rosenberg-Schochet bootstrap category.
- For G compact, $Cell^G$ is again a tensor triangulated category, and:
 - it is 'countably compactly-rigidly generated'.
 - ▶ its compact and dualizable objects agree ~→ they form a nice ttc Cell^G_c.

7. The spectrum of compact G-cell algebras

(D. 2010)

For G finite, the map $\rho \colon \operatorname{Spc}(\operatorname{Cell}_{\mathcal{C}}^{\mathcal{G}}) \longrightarrow \operatorname{Spec}(\operatorname{R}_{\mathbb{C}}(\mathcal{G}))$ is split surjective.

(D.-Meyer 2020)

For G cyclic of prime order, the map $\rho \colon \operatorname{Spc}(\operatorname{Cell}_c^G) \xrightarrow{\sim} \operatorname{Spec}(\mathsf{R}_{\mathbb{C}}(G))$ is injective, hence a homeomorphism.

From now on, ideas for the proof. Set $G \cong \mathbb{Z}/p\mathbb{Z}$ for a prime *p*. Recall:

$$\mathsf{R}_{\mathbb{C}}(G) \cong \mathbb{Z}[\hat{G}] \cong \mathbb{Z}[x]/(x^p-1)$$

and $x^p - 1$ has two irreducible factors:

$$x - 1$$
 and $\Phi_p = 1 + x + \ldots + x^{p-1}$.

8. Computation for $G \cong \mathbb{Z}/p\mathbb{Z}$

Modding them out in turn:

$$\mathbb{Z} \xleftarrow{\mathsf{mod } x-1} \underbrace{\mathbb{Z}[x]/(x^p-1)}_{\mathsf{R}_{\mathbb{C}}(G)} \xrightarrow{\mathsf{mod } \Phi_p} \mathbb{Z}[x]/(\Phi_p) := \mathbb{Z}[\vartheta]$$

Two irreducible components, their intersection is the unique closed point over p. By inverting p on the RHS, get a disjoint union decomposition:

$$\operatorname{Spec} \mathbb{Z} \longrightarrow \operatorname{Spec} \mathsf{R}_{\mathbb{C}}(G) \longleftarrow \operatorname{Spec} \mathbb{Z}[\vartheta, p^{-1}]$$

Now, lift 'the same' decomposition to $Cell^G$, as follows:

$$Cell^{1} \xleftarrow{\mathsf{Res}_{1}^{G}} Cell^{G} \xrightarrow{\mathsf{localisation}} Cell^{G} / \mathsf{Loc}\{C(G)\} =: \mathcal{Q}^{G}$$

9. Computation for $G \cong \mathbb{Z}/p\mathbb{Z}$

Restrict these two tensor-exact functors to compact objects and apply Spc(-) to get the top row:

- The top row is also a disjoint union decomposition (Balmer 2005+15).
- The left ρ is known to be bijective (D. 2010).
- $\operatorname{End}(1)_* \cong \mathbb{Z}[\vartheta, p^{-1}, \beta^{\pm 1}]$ in $\mathcal{Q}^{\mathcal{G}}$, computed thanks to Köhler's UCT.
- In particular, the right square commutes!
- The right ρ is bijective by an abstract criterion (D.-Stanley 2016), since Q_c^G = Thick{1} by construction and End(1)_{*} is regular as seen.

Hence the middle ρ is bijective as well. QED