The spectrum of equivariant Kasparov theory for cyclic groups of prime order

Ivo Dell'Ambrogio Université de Lille

Quantum Groups Seminar Copenhagen, 30 November 2020

Reference: Ivo Dell'Ambrogio and Ralf Meyer, arXiv:2009.05424 (Sept 2020)

1. The equivariant Kasparov category

G : a 2nd countable locally compact group

 \rightsquigarrow KK^G : the G-equivariant Kasparov category (Kasparov 1988)

- \bullet Objects: separable complex $G-C^*$ -algebras
- Hom sets: $Hom(A, B) = KK_0^G(A, B)$ Kasparov cycles $/\sim$, or generalized equiv. $*$ -homomorphisms, or ...
- composition & a symmetric monoidal structure: 'Kasparov product'

(Meyer-Nest 2006)

KK^G is a tensor triangulated category, that is:

- additive category: can sum morphisms and objects (usual direct sums)
- suspension functor Σ: $A \mapsto C_0(\mathbb{R}) \otimes A$ (invertible by Bott: Σ² ≅ Id)
- triangles: $\Sigma \subset \rightarrow A \rightarrow B \rightarrow C$ (mapping cones / cpc-split extensions)
- bi-exact tensor product: $A \otimes_{\min} B$ with diagonal G-action

This algebraic structure captures for example:

Homological algebra: get LES from triangles $\Sigma \subset \stackrel{\partial}{\to} A \to B \to C$:

 $\ldots \to \mathcal{H}\mathit{om}(D, \mathsf{\Sigma} C) \stackrel{\partial_*}{\to} \mathcal{H}\mathit{om}(D, A) \to \mathcal{H}\mathit{om}(D, B) \to \mathcal{H}\mathit{om}(D, C) \stackrel{\partial_*}{\to} \ldots$

 $\ldots \leftarrow Hom(\Sigma\mathit{C},\mathit{D}) \stackrel{\partial^{*}}{\leftarrow} Hom(\mathit{A},\mathit{D}) \leftarrow Hom(\mathit{B},\mathit{D}) \leftarrow Hom(\mathit{C},\mathit{D}) \stackrel{\partial^{*}}{\leftarrow} \ldots$

• Bootstrap-like constructions: S any set of objects: Thick(S) := closure of S under Σ^{\pm} , sums, mapping cones, retracts, and isomorphic objects.

 $Loc(S) :=$ as above + closed under *infinite* direct sums.

Both constructions yield (full) triangulated subcategories.

Thick⊗(S), Loc⊗(S): variants closed under tensoring with any objects \leftrightarrow these are (thick, localizing) tensor ideals.

3. The Balmer spectrum

Can also 'do geometry':

(Balmer 2005)

Every (essentially small) tensor triangulated category $\mathcal T$ admits a 'universal support theory', namely:

- A topological space $Spec(\mathcal{T})$, the spectrum of \mathcal{T} .
- For each $A \in \mathcal{T}$, a closed subset supp $(A) \subset \text{Spc}(\mathcal{T})$, its support.
- This data yields a rough geometric classification of objects: $\mathrm{Thick}_{\otimes}(A) = \mathrm{Thick}_{\otimes}(B) \Leftrightarrow \mathrm{supp}(A) = \mathrm{supp}(B)$

Examples:

 \bullet (Thomason 1997) V an quasi-compact and quasi-separated scheme, $\mathcal{T} = D^{perf}(V) \longrightarrow$ Spc $(\mathcal{T}) \cong V$. In particular for $V = \operatorname{Spec}(R) \quad \leadsto \quad \operatorname{Spc}(D^b(\operatorname{proj}\text{-}R)) \cong \operatorname{Spec}(R).$ \bullet (Benson-Carlson-Rickard 1997) G a finite group, char(k) | $|G|$, $\overset{\sim}{\mathcal{T}} = \mathsf{stmod}(kG) \quad \rightsquigarrow \quad \mathsf{Spc}(\overset{\sim}{\mathcal{T}}) \cong \mathsf{Proj}(H^*(G; k)).$

4. So, what about $\mathcal{T} = \mathcal{K} \mathcal{K}^G$?

A very nice characterisation of the Baum-Connes assembly map:

(Meyer-Nest 2006)

The inclusion functor of the following subcategory

$$
\mathcal{CI} := \mathsf{Loc}_{(\otimes)} \Big(\bigcup_{H \leq G \text{ compact}} \mathsf{Ind}_H^G \big(KK^H \big) \Big) \quad \subset \quad KK^G
$$

has a right adjoint $A \mapsto \tilde{A} \in \mathcal{CI}$. Applying $K_*(G \ltimes -)$ to the counit of adjunction $\varepsilon_A : \tilde{A} \to A$ we get the Baum-Connes assembly map with coefficients in $A \in KK^G$.

Tantalizingly:

(D. 2008)

If the natural map $(\mathsf{Res}^G_H)^*_H\colon \bigcup_{H\text{ cpt}}\mathsf{Spc}(KK^H)\to \mathsf{Spc}(KK^G)$ is surjective, we have $\mathcal{CI} = \mathcal{KK}^G$, hence $\widetilde{A} \stackrel{\simeq}{\to} A$, hence BC holds for G and all A .

5. Towards to spectrum of Kasparov theory

Unfortunately, the computation of $Spec(KK^G)$ seems well out of reach! Only general result known:

(Balmer 2010)

For any (essentially small) tensor triangulated $\mathcal T$, there is a natural continuous map

 $\rho_{\mathcal{T}}: \mathsf{Spc}(\mathcal{T}) \longrightarrow \mathsf{Spec}(\mathsf{End}_{\mathcal{T}}(1))$

to the Zariski spectrum of the endomorphism ring of the tensor unit object 1. It is surjective as soon as $\textsf{End}_{\mathcal{T}}(1)_*$ is noetherian.

Corollary

For G a compact Lie group, we have a surjective map

$$
\text{Spc}(KK^G) \longrightarrow \text{Spec}(R_{\mathbb{C}}(G))
$$

onto the Zariski spectrum of its complex character ring.

6. Bootstrap categories are nicer

Main technical difficulties:

- KK^G has no good generation properties.
- \bullet KK^G has (countable) infinite direct sums, but Spc(-) is best for $(sub-)categories of **compact** and **dualizable** objects A : those which$
	- ► satisfy $Hom(A, \bigoplus_i B_i) \cong \bigoplus_i Hom(A, B_i)$
	- ► and have a tensor-dual A^{\vee} : $Hom(A \otimes B, C) \cong Hom(B, A^{\vee} \otimes C)$.

Definition: G-cell algebras

 $Cell^G = \text{Loc}(\{C(G/H): H \leq G \text{ a closed subgroup}\}) \subset KK^G$

- $Cell¹$ is the usual Rosenberg-Schochet bootstrap category.
- \bullet For G compact, Cell^G is again a tensor triangulated category, and:
	- \blacktriangleright it is 'countably compactly-rigidly generated'.
	- its compact and dualizable objects agree \rightsquigarrow they form a nice ttc Cell^G.

7. The spectrum of compact G-cell algebras

(D. 2010)

For G finite, the map $\rho \colon \mathsf{Spc}(\mathit{Cell}^G_c) \longrightarrow \mathsf{Spec}(\mathsf{R}_\mathbb{C}(G))$ is split surjective.

(D.-Meyer 2020)

For G cyclic of prime order, the map $\rho \colon \mathsf{Spc}(\mathsf{Cell}_\mathcal{C}^G) \stackrel{\sim}{\longrightarrow} \mathsf{Spec}(\mathsf{R}_\mathbb{C}(G))$ is injective, hence a homeomorphism.

From now on, ideas for the proof. Set $G \cong \mathbb{Z}/p\mathbb{Z}$ for a prime p. Recall:

$$
\mathsf{R}_{\mathbb{C}}(\mathsf{G})\cong \mathbb{Z}[\hat{\mathsf{G}}]\cong \mathbb{Z}[x]/(x^p-1)
$$

and $x^p - 1$ has two irreducible factors:

$$
x - 1
$$
 and $\Phi_p = 1 + x + ... + x^{p-1}$.

8. Computation for $G \cong \mathbb{Z}/p\mathbb{Z}$

Modding them out in turn:

$$
\mathbb{Z} \xleftarrow{\mod x-1} \underbrace{\mathbb{Z}[x]/(x^p-1)}_{R_{\mathbb{C}}(G)} \xrightarrow{\mod \Phi_p} \mathbb{Z}[x]/(\Phi_p) := \mathbb{Z}[\vartheta]
$$

Two irreducible components, their intersection is the unique closed point over p . By inverting p on the RHS, get a disjoint union decomposition:

$$
\operatorname{\mathsf{Spec}}\mathbb{Z}\rightarrow \longrightarrow \operatorname{\mathsf{Spec}}\nolimits\mathrm{R}_\mathbb{C}(\mathsf{G})\longleftarrow \longrightarrow \operatorname{\mathsf{Spec}}\nolimits\mathbb{Z}[\vartheta,\rho^{-1}]
$$

Now, lift 'the same' decomposition to $Cell^G$, as follows:

$$
Cell^1 \longleftarrow \xrightarrow{\text{Res}^G_1} Cell^G \xrightarrow{\text{localisation}} Cell^G / \text{Loc} \{ C(G) \} =: \mathcal{Q}^G
$$

9. Computation for $G \cong \mathbb{Z}/p\mathbb{Z}$

Restrict these two tensor-exact functors to compact objects and apply $Spc(-)$ to get the top row:

- \bullet The top row is also a disjoint union decomposition (Balmer 2005+15).
- The left ρ is known to be bijective (D. 2010).
- End $(\mathbf{1})_*\cong \mathbb{Z}[\vartheta, \rho^{-1}, \beta^{\pm 1}]$ in \mathcal{Q}^G , computed thanks to Köhler's UCT.
- In particular, the right square commutes!
- The right ρ is bijective by an abstract criterion (D.-Stanley 2016), since $\mathcal{Q}^{\bm{G}}_c = \mathsf{Thick}\{\bm{1}\}$ by construction and $\mathsf{End}(\bm{1})_*$ is regular as seen. Hence the middle ρ is bijective as well. QED