Green 2-functors

Ivo Dell'Ambrogio

Reference:

D., "Green 2-functors", Trans. AMS (to appear) arXiv:2107.09478

Triangulated categories in representation theory and beyond The Abel Symposium, 6 June 2022 Ålesund, Norway

Some structure in the representation theory of finite groups

Let $\mathcal{M}(G)$ be either mod(kG), $D^b(mod kG)$, or $\underline{mod}(kG)$. Let us vary G!

The following are basic tools, used all the time:

• The **restriction**, **induction** and **conjugation** functors $(H \leq G)$:

$$\mathcal{M}(G)$$
Ind \bigwedge Res
 $\mathcal{M}(H) \xrightarrow{Conj_g} \mathcal{M}({}^gH)$

- The adjunctions Ind ⊢ Res ⊢ Ind
 (Note: have an ambijunction only because <u>index finite</u> & <u>categories additive!</u>)
- Conjugation natural isos between composites functors, e.g.

$$conj_g : Conj_g \circ Res_H^G \cong Res_{gH}^G$$

• Other relations, most notably the **Mackey formula** (for $K, L \leq G$):

$$\mathit{Res}^{\mathit{G}}_{\mathit{L}} \circ \mathit{Ind}^{\mathit{G}}_{\mathit{K}} \cong \bigoplus_{[g] \in \mathit{L} \backslash \mathit{G} / \mathit{K}} \mathit{Ind}^{\mathit{L}}_{\mathit{L} \cap \mathit{E} \mathit{K}} \circ \mathit{Conj}_{g} \circ \mathit{Res}^{\mathit{K}}_{\mathit{L}^{\mathit{E}} \cap \mathit{K}} \; .$$

An axiomatization: Mackey 2-functors

gpd: the 2-category of finite groupoids, functors, natural isomorphismsADD: the 2-category of additive categories, additive functors, natural transf.

Definition [Balmer-D. 2020]

A Mackey 2-functor is a 2-functor

$$\mathcal{M} \colon gpd^{op} \longrightarrow ADD$$

satisfying the following axioms:

- ② Induction: Every 'restriction' $i^* := \mathcal{M}(i)$ along a faithful functor i between groupoids admits both a left adjoint i and a right adjoint i_* .
- Base-Change / Mackey formula: the left and right adjunctions satisfy base-change with respect to pseudo-pullbacks (iso-comma squares).
- **1** Ambidexterity: There is a natural isomorphism $i_! \cong i_*$ for all faithful i.

Mackey 2-functors: comments

Explanations:

- Additivity axiom: groupoids decompose into groups $G \simeq | \cdot |_i G_i$ \rightarrow the data of the 2-functor \mathcal{M} is determined by what it does on groups.
- **Induction:** as for derivators, (co)induction i_1 and i_* are not part of the data.
- Ambidexterity: any isomorphisms $i_1 \cong i_*$ will do, so the axiom is easy to check in examples!

Fact ("rectification theorem"): the axioms imply there exist unique isomorphisms θ_i : $i_i \cong i_*$ fully compatible with given left and right adjunctions.

Variations are possible:

- NB: The previous definition is actually more analogous to inflation functors, because it has 'restrictions' f^* along non-faithful morphisms f.
- For the 'correct' analogue of global Mackey functor: replace gpd by gpd_f (only allow faithful functors).
- For the G_0 -local version (only $G \leq G_0$): replace gpd with $gpd_f/G_0 \simeq G_0$ -set.
- We can vary the target 2-category: triangulated cats, add. derivators,...

Base-Change = canonical Mackey formulas

Base-Change axiom: an iso-comma square γ in gpd with two faithful sides defines, via \mathcal{M} and the left/right adjunctions, two mates $\gamma_!$ and $(\gamma^{-1})_*$:

The axiom requires both to be invertible: $f^*i_1 \cong q_1p^*$ and $f^*i_* \cong q_*p^*$. **Convenient fact:** via the rectification isos θ , they are mutual inverses!

Motivating example: for i, f two subgroup inclusions $K, L \leq G$

iso-comma
$$K \xrightarrow{p} (i/f) q$$
 $(i/f) \simeq \coprod_{[g] \in L \setminus G/K} L \cap {}^gK$ get a Mackey formula!

Note: the iso-comma groupoid (i/f) and the Base-Change isos are canonical, but the decomposition into groups depends on choices!

Exemples of Mackey 2-functors

There is a Mackey 2-functor \mathcal{M} for each of the following families of abelian or triangulated categories $\mathcal{M}(G)$:

- In (linear) representation theory: $\mathcal{M}(G) = mod(kG), \ Mod(kG), \ D(kG), \ \underline{mod}(kG) \ (\mbox{\hookleftarrow} \ only \ on \ gpd_f), ...$
- In (formal) representation theory: $\mathcal{M}(G) = Mack_k(G)$ or $CoMack_k(G)$, categories of ordinary Mackey functors!
- In topology: $\mathcal{M}(G) = Ho(\mathcal{S}p^G)$, the homotopy category of genuine G-spectra.
- In geometry (only defined 'locally' for a fixed group G_0): Fix X a locally ringed space (e.g. scheme) with a G_0 -action. For $G \leq G_0$, $\mathcal{M}(G) = Sh(X/\!\!/ G)$ the category of G-equivariant \mathcal{O}_X -modules. Variants: take the derived category $D(Sh(X/\!\!/ G))$, or constructible sheaves, or coherent sheaves if X is a noetherian scheme, etc.

Note: all these are *tensor* categories → examples of "Green 2-functors"?

What do we find in the examples?

Let $\mathcal{M}(G)$ be any of the previous examples, say mod(kG).

- Each category $\mathcal{M}(G)$ is **(symmetric) monoidal**.
- Restriction and conjugation functors are **strong tensor functors**:

- The conjugation natural isos are monoidal natural transformations.
- There is a **projection formula** (two of them, related by the symmetry):

$$Ind_H^G(\ Res_H^G(X) \otimes_H Y\) \ \cong \ X \otimes_G Ind_H^G(Y)$$

All of this seems to be 'coherent'...

An axiomatization: Green 2-functors

Definition

A (symmetric) <u>pre-</u>Green 2-functor is a Mackey 2-functor ${\mathcal M}$ equipped with a lifting

$$\begin{array}{c} PsMon(ADD) \\ gpd^{op} \xrightarrow{- - - - \mathcal{M}} & \downarrow forget \\ ADD \end{array}$$

to (symm.) pseudo-monoids in ADD.

A pre-Green 2-functor $\mathcal M$ and a faithful $i\colon H\rightarrowtail G$ define commutative squares

$$\begin{array}{lll} X \otimes i_*(Y) \xrightarrow{Rproj} i_*(X \otimes i^*Y) & & i_*(Y) \otimes X \xrightarrow{Rproj} i_*(i^*Y \otimes X) \\ \cong & \uparrow \theta & & \theta \uparrow \simeq & & \theta \uparrow \simeq \\ X \otimes i_!(Y) \xleftarrow{Lproj} i_!(X \otimes i^*Y) & & i_!(Y) \otimes X \xleftarrow{Lproj} i_!(i^*Y \otimes X) \end{array}$$

where *Lproj* and *Rproj* are the evident mate transformations of the strong monoidal structure of i^* under the two *rectified* adjunctions $i_! \dashv i^* \dashv i_*$.

An axiomatization: Green 2-functors

Definition

The **projection formulas** hold for i if in both squares the maps Rproj, Lproj are invertible, hence mutually inverse modulo θ .

A (symm.) pre-Green 2-functor is a (symm.) Green 2-functor if this holds $\forall i$.

Examples: all previous Mackey 2-functors, for the usual tensor structures.

Theorem (Origins of the projection formulas)

The projection formulas hold for all i if and only if the external tensor products

$$\mathcal{M}(\mathit{G}_{1}) imes \mathcal{M}(\mathit{G}_{2}) \overset{\overline{\otimes}}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!\!-} \mathcal{M}(\mathit{G}_{1} imes \mathit{G}_{2})$$

associated with the given internal ones \otimes "preserves inductions" in both variables.

Warning! This holds on gpd or G-set, but not gpd_f (which is not Cartesian!)

Application: "finite-index Res_H^G are finite étale extensions"

Let \mathcal{M} be a Green 2-functor and $i: H \rightarrow G$ faithful.

- \Rightarrow The (co)induction functors $i_!, i_* : \mathcal{M}(H) \to \mathcal{M}(G)$ are colax / lax monoidal.
- \Rightarrow The object $A(i) := i_*(1) \cong i_!(1)$ is both a monoid and comonoid in $\mathcal{M}(G)$.

Theorem (Induced Frobenius algebras)

A(i) is a special Frobenius monoid, commutative when \mathcal{M} is symmetric.

Corollary (Separable tensor monadicity - [Balmer-Sanders-D. 2016])

If ${\mathcal M}$ is idempotent complete (each category is), there are canonical equivalences

$$\mathcal{M}(G)$$
 $i^* \downarrow \qquad Free$
 $A(i)$ -Comod $\stackrel{\sim}{\longleftarrow} \mathcal{M}(H) \stackrel{\sim}{\longrightarrow} A(i)$ -Mod

of symmetric monoidal categories if $\mathcal M$ is symmetric, and of tensor triangulated categories if moreover $\mathcal M$ is triangulated.

Application: decategorifications

A Mackey 2-functor \mathcal{M} can be 'decategorified' in at least two different ways:

K-decategorification - [Dress 1973] [Balmer–D. 2020]

If \mathcal{M} is essentially small, the composite $K_0^{add} \circ \mathcal{M}$ is an ordinary Mackey functor. Variants: If \mathcal{M} takes the appropriate values, we can use K_0^{triang} , K_0^{ex} , $K_*^{Quillen}$, ...

Clearly: if \mathcal{M} is a Green 2-functor, its K-decategorifications are *Green* functors!

Hom-decategorification - [Balmer–D. 2022]

If the Mackey 2-functor $\mathcal M$ is equipped with two coherent families of objects

$$\left\{X_G,Y_G\in\mathcal{M}(G)\text{ for all }G,\quad i^*X_G\cong X_H\;,\;i^*Y_G\cong Y_H\text{ for all }i\colon H\rightarrowtail G\right\}$$

then there is an ordinary Mackey functor M such that

$$M(G) = Hom_{\mathcal{M}(G)}(X_G, Y_G).$$

Variants: with graded Homs . . .

Ordinary Green functors via Hom-decategorifications

Theorem ("Endo-style")

Choosing $X_G \equiv Y_G$ in a Hom-decategorification yields a Green functor M with

$$M(G) = End_{\mathcal{M}(G)}(X_G).$$

Example ("Unit-style")

If $\mathcal M$ is a Green 2-functor, we can always take $X_G=Y_G=\mathbf{1}_G$ the tensor unit, $\forall G$.

More generally:

Theorem ("Convolution-style")

Given a Green 2-functor $\mathcal M$ equipped with

- ullet a coherent family of *comonoids* $X_G \in \mathcal{M}(G)$
- ullet a coherent family of monoids $Y_G \in \mathcal{M}(G)$

then the associated Mackey functor $G \mapsto M(G) = Hom_{\mathcal{M}(G)}(X_G, Y_G)$ is an ordinary Green functor via the convolution products.

The origins of classical Green functors

Fact: all classical examples of Green functors from algebra and topology arise in one of these two of three ways from some naturally occurring Green 2-functor.

For instance:

- Group cohomology: $M(G) = H^*(G; k) = Hom_{D(kG)}^*(k, k)$ \leadsto Unit-style (graded) Hom-decat. from the Green 2-functor D(kG).
- The Burnside ring: $M(G) := K_0(G\text{-set}) \cong K_0(Span(G\text{-set}))$
 - \leadsto K-decat. from $Mack^{f.g.free}_{\mathbb{Z}}(G) = \mathbb{Z}Span(G-set)$
 - \rightsquigarrow also: unit-style Hom-decat. from SH(G)!
- The complex character ring: $M(G) = Rep_{\mathbb{C}}(G) = K_0(\mathbb{C}G\text{-}mod)$
 - \rightsquigarrow K-decat from $\mathbb{C}G$ -mod, obviously
 - \rightsquigarrow also: unit-style Hom-decat from the Kasparov category KK(G)
- Fixed points: $H \mapsto A^H = Hom_{kH}(k, A)$, for A a G-algebra (G fixed, $H \leq G$) \hookrightarrow Convolution-style Hom-decat. from kG-mod, with $X_H = \mathbf{1}_H$ and $Y_H = A$.
- γ convolution style from decat. Notified mod, with $M_H = 1_H$ and $M_H = 7$.

These methods yield an industrial production of Green functors, as well as *modules over them.*

Thank you for your attention!