On the origins of classical Green functors

Ivo Dell'Ambrogio

Reference:

D., "Green 2-functors", *Trans. AMS* (to appear) arXiv:2107.09478

Techniques fonctorielles en théorie des groupes Conférence en honneur de Serge Bouc Amiens, 15 June 2022

Some structure in the representation theory of finite groups

 $\mathcal{M}(G) := mod(kG)$: the category of k-linear representations of a finite group G.

By varying G, we get the following basic structures:

• The **restriction**, **induction** and **conjugation** functors $(H \leq G, g \in G)$:

$$\mathcal{M}(G)$$
Ind \bigwedge Res
 $\mathcal{M}(H) \xrightarrow{Conj_g} \mathcal{M}({}^gH)$

- The adjunctions $Ind \dashv Res \dashv Ind$ ($\Leftarrow index finite \& categories additive!$)
- Conjugation natural isos between composites, e.g.

$$\mathit{conj}_g \colon \mathit{Conj}_g \circ \mathit{Res}_H^{\mathsf{G}} \cong \mathit{Res}_{\mathit{gH}}^{\mathsf{G}}$$

• Other relations, most notably the **Mackey formula** (for $K, L \leq G$):

$$Res_L^G \circ Ind_K^G \cong \bigoplus_{[g] \in L \setminus G/K} Ind_{L \cap s_K}^L \circ Conj_g \circ Res_{L^g \cap K}^K$$
.

An axiomatization: Mackey 2-functors

gpd: the 2-category of finite groupoids, functors, natural isomorphismsADD: the 2-category of additive categories, additive functors, natural transf.

Definition [Balmer-D. 2020]

A Mackey 2-functor is a 2-functor

$$\mathcal{M}\colon gpd^{op} \longrightarrow ADD$$

satisfying the following four axioms.

Additivity axiom

$$\mathcal{M}(G_1 \sqcup G_2) \overset{\sim}{ o} \mathcal{M}(G_1) \oplus \mathcal{M}(G_2) \quad \text{and} \quad \mathcal{M}(\emptyset) \overset{\sim}{ o} 0.$$

 \leadsto groupoids decompose into groups $G \simeq \sqcup_i G_i$, hence the *structure* of the Mackey 2-functor $\mathcal M$ is determined by the data associated to finite groups, group homomorphisms and their conjugation relations (see previous slide!).

A very nice induction

2 Induction axiom: For every *faithful i*: $H \to G$, the 'restriction' functor $\mathcal{M}(i) = i^*$ has a left adjoint i_ℓ and a right adjoint i_r :

Note: the adjoints are not really part of the structure.

3 Ambidexterity axiom: For every faithful i, there is an isomorphism $i_{\ell} \cong i_{r}$.

The above are easy to check in examples, but we get more:

Rectification theorem

Under the four axioms, there exist for all i unique isomorphisms $\theta_i \colon i_\ell \cong i_r$ fully compatible with given left and right adjunctions.

Base-Change axiom = canonical Mackey formulas

Quantificial State 1.1 Base-Change axiom: each iso-comma square γ in gpd with two faithful sides defines, via $\mathcal M$ and the left/right adjunctions, two mates γ_ℓ and $(\gamma^{-1})_r$:

We require both to be invertible: $f^*i_\ell \cong q_\ell p^*$ and $f^*i_r \cong q_r p^*$.

Convenient fact: via the rectification θ 's, the two mates are mutual inverses!

Motivating example: for i, f two subgroup inclusions $K, L \leq G$

Variations on the axioms

Variations are possible:

- Note: The previous definition is actually more analogous to inflation functors, because it has 'restrictions' f^* along non-faithful morphisms $f: H \to G$.
- For the analogue of global Mackey functor: replace gpd by gpd_f (only allow faithful functors).
- For the G_0 -local version (only allow $G \le G_0$ for a fixed group G_0): replace gpd with the comma 2-category gpd_f/G_0 . Note: this is equivalent to the ordinary category of finite left G_0 -sets:

 We can also vary the <u>target 2-category</u>: abelian categories, triangulated categories, additive derivators, . . .

Examples of Mackey 2-functors

Each of the following families of additive (in fact, abelian or triangulated) categories $\mathcal{M}(G)$ defines a Mackey 2-functor:

- From (linear) representation theory:
 - $\mathcal{M}(G) = mod(kG)$ or Mod(kG) f.dim. or all representations over k
 - $\mathcal{M}(G) = D^b \pmod{kG}$ or D(kG) (un)bounded derived category
 - $\mathcal{M}(G) = mod(kG)$ stable module category (\mathcal{M} only defined on $gpd_f!$)
- From (formal) representation theory:
 - $\mathcal{M}(G) = Mack_k(G)$ or $CoMack_k(G)$ ordinary (cohom.) Mackey functors!
- From topology:
 - $\mathcal{M}(G) = Ho(\mathcal{S}p^G)$ the homotopy category of genuine G-spectra.
- From noncommutative geometry:
 - $\mathcal{M}(G) = KK^G$ the equivariant Kasparov category of $G\text{-}C^*$ -algebras

Note: all these are *tensor* categories → examples of "Green 2-functors"?

Multiplicative structure in the examples

Let $\mathcal{M}(G) = mod(kG)$, say:

- Each category $\mathcal{M}(G)$ is **(symmetric) monoidal** via $-\otimes_k -$, with unit k.
- Restriction and conjugation functors are strong tensor functors:

- The conjugation natural isos are monoidal natural transformations.
- There is a projection formula (two of them, related by the symmetry):

$$\mathit{Ind}_{H}^{\mathit{G}}(\;\mathit{Res}_{H}^{\mathit{G}}(X)\otimes_{H}Y\;)\;\cong\;X\otimes_{\mathit{G}}\mathit{Ind}_{H}^{\mathit{G}}(Y)$$

All of this data seems to be 'coherent'...

An axiomatization: Green 2-functors

Definition

A (symmetric) Green 2-functor is a Mackey 2-functor ${\mathcal M}$ equipped with a lifting

$$\begin{array}{c} PsMon(ADD) \\ polyhood \longrightarrow \mathcal{M} \\ polyhood \longrightarrow \mathcal{ADD} \end{array}$$

to (symm.) pseudo-monoids in ADD, satisfying the projection formulas below.

Given a lift of \mathcal{M} and a faithful $i: H \rightarrowtail G$, we have in particular a strong monoidal structure on i^* , hence by taking mates for the adjunctions $i_\ell \dashv i^*$ and $i^* \dashv i_r$ we get natural maps Lproj and Rproj making the two squares commute:

$$\begin{array}{ll} X \otimes i_r(Y) \xrightarrow{Rproj} i_r(X \otimes i^*Y) & i_r(Y) \otimes X \xrightarrow{Rproj} i_r(i^*Y \otimes X) \\ \cong & \uparrow \theta & \theta \uparrow \simeq & \theta \uparrow \simeq \\ X \otimes i_\ell(Y) \xleftarrow{Lproj} i_\ell(X \otimes i^*Y) & i_\ell(Y) \otimes X \xleftarrow{Lproj} i_\ell(i^*Y \otimes X) \end{array}$$

An axiomatization: Green 2-functors

Definition

 ${\cal M}$ satisfies the **projection formulas** if in aech square the maps ${\it Rproj}, {\it Lproj}$ are invertible, hence mutually inverse modulo $\theta.$

Examples:

all previous Mackey 2-functors are Green 2-functors for the usual tensor structures.

Theorem (Origins of the projection formulas)

The projection formulas hold for all i if and only if the external tensor products

$$\mathcal{M}(\mathit{G}_{1}) imes \mathcal{M}(\mathit{G}_{2})$$
 \longrightarrow $\mathcal{M}(\mathit{G}_{1} imes \mathit{G}_{2})$

associated with the given internal ones \otimes "preserve inductions" in both variables.

Warning:

This reformulation holds on gpd or G-set, but not gpd_f (which is not Cartesian!)

An application: decategorifications

A Mackey 2-functor ${\mathcal M}$ can be 'decategorified' in at least two different ways:

K-decategorification - [Dress 1973] [Balmer-D. 2020]

If $\mathcal M$ is essentially small, the composite $K_0^{add}\circ \mathcal M$ is an ordinary Mackey functor. Variants: If $\mathcal M$ takes the appropriate values, we can use K_0^{triang} , K_0^{ex} , $K_*^{Quillen}$, ...

Clearly: if $\mathcal M$ is a Green 2-functor, its K-decategorifications are Green functors!

Hom-decategorification - [Balmer-D. 2022]

If the Mackey 2-functor $\ensuremath{\mathcal{M}}$ is equipped with two coherent families of objects

$$\left\{X_G,Y_G\in\mathcal{M}(G)\text{ for all }G,\quad i^*X_G\cong X_H\text{ , }i^*Y_G\cong Y_H\text{ for all }i\colon H\to G\right\}$$

then there is an ordinary Mackey functor M such that

$$M(G) = Hom_{\mathcal{M}(G)}(X_G, Y_G).$$

Variants: with graded Homs . . .

Ordinary Green functors via Hom-decategorifications

Theorem ("Endo-style")

Choosing $X_G \equiv Y_G$ in a Hom-decategorification yields a Green functor M with

$$M(G) = End_{\mathcal{M}(G)}(X_G).$$

Example ("Unit-style")

If $\mathcal M$ is a Green 2-functor, we can always take $X_G=Y_G=\mathbf{1}_G$ the tensor unit, $\forall G$.

More generally:

Theorem ("Convolution-style")

Given a Green 2-functor ${\mathcal M}$ equipped with

- ullet a coherent family of *comonoids* $X_G \in \mathcal{M}(G)$
- ullet a coherent family of monoids $Y_G \in \mathcal{M}(G)$

then the associated Mackey functor $G \mapsto M(G) = Hom_{\mathcal{M}(G)}(X_G, Y_G)$, equipped with the convolution products, is an ordinary Green functor.

The origins of classical Green functors

Fact: all classical examples of Green functors from algebra and topology arise in one of these two of three ways from some naturally occurring Green 2-functor.

For instance:

- The Burnside ring: $M(G) := K_0(G\text{-set}) \cong K_0(Span(G\text{-set}))$
 - \leadsto K-decat. from $\mathit{Mack}^{f.g.free}_{\mathbb{Z}}(G) = \mathbb{Z}\mathit{Span}(G\text{-}\mathit{set}) \ (\leftrightsquigarrow \ \mathsf{made} \ \mathsf{additive})$
 - \rightsquigarrow also: unit-style Hom-decat. from $Ho(Sp^G)$!
- The complex character ring: $M(G) = Rep_{\mathbb{C}}(G) = K_0(\mathbb{C}G\text{-}mod)$
 - \rightsquigarrow K-decat from $\mathbb{C}G$ -mod, obviously
 - → also: unit-style Hom-decat. from the Kasparov category KK^G
- Fixed points: $H \mapsto A^H = Hom_{kH}(k, A)$, for A a G-algebra (G fixed, $H \leq G$)
 - ightharpoonup convolution-style Hom-decat. from kG-mod, with $X_H=\mathbf{1}_H$ and $Y_H=A$.

These methods yield an industrial production of Green functors, as well as *modules over them.*

Thank you for your attention!

The motivic approach

An ordinary Green functor is a monoid in the tensor category of Mackey functors. This should categorify in the Cartesian case (for \mathcal{M} defined on gpd or G-set):

Theorem [Balmer-D. 2020]

There is an additive 2-category Mot of **Mackey 2-motives**, through which every Mackey 2-functor $\mathcal M$ factors uniquely as an additive 2-functor:

Conjecture

- Cartesian products induce an additive symmetric monoidal structure on *Mot*.
- By Day convolution, this extends to a symmetric monoidal structure on the 2-category $2Mack \simeq 2Fun_{add}^{ind}(Mot, ADD)$ of Mackey to functors.
- A Green 2-functor is the same as a pseudo-monoid in 2*Mack*.