An introduction to Mackey 2-functors

Ivo Dell'Ambrogio
19 April 2021

Département de Mathématiques

(1) Laboratoire $\begin{aligned} & \text { Paul Painlevé }\end{aligned}$

Ita $\underset{\rightleftarrows}{\rightleftarrows} \mathbf{C a}$
ItaCa Fest 2021

References:

(1) Paul Balmer and Ivo Dell'Ambrogio. Mackey 2-functors and Mackey 2-motives. EMS Monographs in Mathematics. European Mathematical Society. Zürich (2020), viii+227. (arXiv:1808.04902)
(2) Paul Balmer and Ivo Dell'Ambrogio. Green equivalences in equivariant mathematics. Math. Ann. (2021) (arXiv:2001.10646)
(3) Paul Balmer and Ivo Dell’Ambrogio. Cohomological Mackey 2-functors. Preprint 2021 (arXiv:2103.03974)
(9) Jun Maillard. A categorification of the Cartan-Eilenberg formula. Preprint 2021 (arXiv:2102.07554)

What is representation theory?

At the very least: finite groups acting on vector spaces!
For G a finite group, k a field
\rightsquigarrow study the category of (left, fin. gen.) $k G$-modules and $k G$-linear maps:

$$
\bmod (k G)
$$

Classical dichotomy:

- The semi-simple case, when char $k \nmid|G|$, e.g. char $k=0$:

Maschke's theorem: Every finite dim'I representation is uniquely a direct sum of simple ones.
$\rightsquigarrow \quad$ enough to study the representation ring $R_{k}(G)=K_{0}(\bmod k G)$.

- The modular case, when char $k||G|$:

Now the abelian category $\bmod (k G)$ has non-trivial extensions.
\leadsto need categorical and homological tools:
derived category $D^{b}(\bmod k G)$, stable module category $\bmod (k G)$.

An extra layer of 2-categorical structure

Let $\mathcal{M}(G)$ be either $\bmod (k G), D^{b}(\bmod k G)$, or $\bmod (k G)$. Let us vary G !
The following are basic tools, used all the time:

- The restriction, induction and conjugation functors $(H \leq G)$:

$$
\begin{aligned}
& \mathcal{M}(G)
\end{aligned}
$$

- The adjunctions Ind \dashv Res \dashv Ind
(Note: have an ambijunction only because index finite \& categories additive!)
- Conjugation natural isos between composites functors, e.g.

$$
\text { conjg }: \operatorname{Conj}_{g} \circ \operatorname{Res}_{H}^{G} \cong \operatorname{Res}_{g H}^{G}
$$

- The Mackey formula (for $K, L \leq G$):

$$
\operatorname{Res}_{L}^{G} \circ \operatorname{Ind} d_{K}^{G} \cong \bigoplus_{[g] \in L \backslash G / K} \operatorname{Ind} L_{L \cap s K}^{L} \circ \operatorname{Conj}_{g} \circ \operatorname{Res}_{L \varepsilon}^{K} \cap K .
$$

Axiomatization: Mackey 2-functors

$g p d_{f}$: the 2-category of finite groupoids, faithful functors, natural isos $A D D$: the 2-category of additive categories, additive functors, nat. transf.

Definition [Balmer-D. 2020]
A (global) Mackey 2-functor is a 2 -functor

$$
\mathcal{M}: g p d_{f}^{o p} \longrightarrow A D D
$$

satisfying the following axioms:
(1) Additivity: $\mathcal{M}\left(G_{1} \sqcup G_{2}\right) \xrightarrow{\sim} \mathcal{M}\left(G_{1}\right) \oplus \mathcal{M}\left(G_{2}\right)$ and $\mathcal{M}(\emptyset) \xrightarrow{\sim} 0$.
(2) Every 'restriction' $i^{*}:=\mathcal{M}(i)$ admits a left adjoint $i_{\text {! }}$ and a right adjoint i_{*}.
(3) Left and right adjunctions satisfy Base-Change for iso-comma squares.
(4) There is a natural isomorphism $i_{!} \cong i_{*}$ for all $i: H \rightarrow G$.

For the 'local' variant for a fixed G : replace $g p d_{f}$ with $g p d_{f} / G \simeq G$-set.

Comments on the axioms

Inspired by:

- Ordinary, abelian-group-valued Mackey functors [Green, Dress 60s]
- Additive derivators [Grothendieck 80s]
- Similar, but complementary, to the Mackey $(\infty, 1)$-functors of [Barwick '17]

Explanations:

- Additivity axiom 1: groupoids decompose into groups $G \simeq \bigsqcup_{i} G_{i}$ \leadsto the data of the 2 -functor \mathcal{M} is determined by what it does to the 2 -full 2-subcategory of finite groups: the Res, Cong/Isos and cong !
- Induction 2: as is the case with derivators, (co)induction functors $i_{!}$and i_{*} are not really part of the data.
- Ambidexterity 4: any isomorphisms $i_{!} \cong i_{*}$ will do, so the axiom is easy to check in examples!

Fact (rectification theorem): if axiom 4 holds, there exist unique canonical isomorphisms $\theta_{i}: i_{!} \cong i_{*}$ fully compatible with given left and right adjunctions.

Base-Change $=$ canonical Mackey formulas

Base-Change axiom 3: every iso-comma square γ in gpd_{f} defines, via the 2 -functor \mathcal{M} and the left/right adjunctions, two mates $\gamma!$ and $\left(\gamma^{-1}\right)_{*}$:

The axiom requires both to be invertible: $j^{*} i!q_{!} \cong p^{*}$ and $j^{*} i_{*} \cong q_{*} p^{*}$.
Convenient fact: via the rectification isos θ, they are mutual inverses!
Motivating example: for two subgroups $K, L \leq G$

Note: the iso-comma groupoid (i / j) and the Base-Change isos are canonical, but the decomposition into groups depends on choices!

Exemples: Mackey 2-functors are everywhere!

There is a Mackey 2-functor \mathcal{M} for each of the following families of abelian or triangulated categories $\mathcal{M}(G)$:

- In (linear) representation theory:
$\mathcal{M}(G)=\bmod k G, \operatorname{Mod} k G, D^{b}(\bmod k G), D(\operatorname{Mod} k G), \bmod (k G) \ldots$
- In topology:
$\mathcal{M}(G)=H o\left(S p^{G}\right)$, the homotopy category of genuine G-spectra.
- In noncommutative geometry:
$\mathcal{M}(G)=K K^{G}$ or E^{G}, equivariant Kasparov theory or Higson-Connes E-theory of C^{*}-algebras.
- In geometry (only defined 'locally' for a fixed group G):

Fix X a locally ringed space (e.g. scheme) with a G-action.
For $H \leq G, \mathcal{M}(H)=\operatorname{Sh}(X / / H)$ the category of H-equivariant \mathcal{O}_{X}-modules.
Variants: take the derived category $D(S h(X / / H)$), or constructible sheaves, or coherent sheaves if X is a noetherian scheme, etc.

First results: monadicity

So... What can we prove with these axioms? Let's see some applications.
Among the many good properties of the canonical isos θ_{i}, we can show the ambijunction at every $i: H \rightarrow G$ has the special Frobenius property:

$$
\left(\mathrm{Id}_{\mathcal{M}(H)} \stackrel{\text { unit }}{\Longrightarrow} i^{*} i_{!} \stackrel{\theta_{i}}{=} i^{*} i_{*} \stackrel{\text { counit }}{\Longrightarrow} \mathrm{Id}_{\mathcal{M}(H)}\right)=\quad \text { id }
$$

By a 'separable' version of Beck's monadicity criterion, this implies:

Co/monadicity of restrictions [Balmer-D. 2020]

Suppose \mathcal{M} takes values in idempotent complete categories. For every $i: H \rightarrow G$ the adjunction $i^{*} \dashv i_{*}$ is monadic and $i_{!} \dashv i^{*}$ comonadic:

$$
\mathcal{M}(G)^{i_{i} i^{*}} \simeq \mathcal{M}(H) \xrightarrow{\sim} \mathcal{M}(G)^{i_{*} i^{*}}
$$

Thus, we can always recover the 'smaller' $\mathcal{M}(H)$ from the 'bigger' $\mathcal{M}(G)$.

Motivic approach

A Mackey 2 -functor is \boldsymbol{k}-linear if its values are k-linear categories and functors (over some commutative ring k).

Theorem (Mackey 2-motives)
There is a 2-category Mot $_{k}$ of \boldsymbol{k}-linear Mackey 2-motives, through which every k-linear \mathcal{M} factors uniquely:

Corollary

The 2-cell endomorphism ring $E n d_{\text {Mot }_{k}}\left(I d_{G}\right)$ of (the motive of) a group G acts on the category $\mathcal{M}(G)$, for every k-linear Mackey 2 -functor \mathcal{M}.

Mot $_{k}$ has concrete models (via spans, bimodules, or string diagrams): we can compute in it!

Universal block decompositions

For instance:

Motivic endomorphism ring

$E n d_{M_{\text {ot }}}\left(\operatorname{Id}_{G}\right)$ is isomorphic to the crossed Burnside \boldsymbol{k}-algebra [Yoshida '97]

$$
B_{k}^{c}(G)=k \otimes_{\mathbb{Z}} K_{0}\left(G \text {-sets } / G^{c o n j}, \text { a certain braided } \otimes\right)
$$

or concretely: a finite free k-module generated by G-conjugacy classes of pairs (H, a) with $H \leq G$ and $a \in C_{G}(H)$, with multiplication given by:

$$
(K, b) \cdot(H, a)=\sum_{[g] \in K \backslash G / H}\left(K \cap^{g} H, \text { bgag }^{-1}\right) .
$$

Example: well-known that the (usual) Burnside ring $B(G)=K_{0}(G$-set) acts on $\mathcal{M}(G)=H o\left(S p^{G}\right)$, since $B(G) \cong \operatorname{End}\left(S^{0}\right)$ and the sphere S^{0} is the tensor unit. But now $B_{\mathbb{Z}}^{c}(G)$ also acts, a bigger ring \rightsquigarrow get a finer direct sum decomposition:

$$
H o\left(S p^{G}\right) \simeq \bigoplus_{e \in \operatorname{Primldem}\left(B_{\mathbb{Z}}^{c}(G)\right)} e \cdot H o\left(\mathcal{S} p^{G}\right)
$$

The Cartan-Eilenberg formula

A classical result links cohomology and fusion in groups:

The stable elements formula [Cartan-Eilenberg '56]

Let $0<p=$ char $k||G|$. Group cohomology is computed by the limit

$$
H^{*}(G ; k) \cong \lim _{P \in \mathcal{F}_{P}(G)} H^{*}(P ; k)
$$

taken over the \boldsymbol{p}-fusion category $\mathcal{F}_{p}(G)=\left\{\begin{array}{l}\text { objects: } p \text {-subgroups of } G \\ \text { morphisms: incl. and conj. maps. }\end{array}\right.$
But group cohomology is only a small piece of the derived category:

$$
H^{*}(G ; k) \cong \operatorname{Hom}_{D^{b}(\bmod k G)}\left(k, \Sigma^{*} k\right) .
$$

Question: Can we similarly reconstruct $D^{b}(\bmod k G)$ from $D^{b}(\bmod k P)$ for p-subgroups P, together with restrictions \& conjugations?

Yes!

We say \mathcal{M} is cohomological if $\left(\operatorname{Id}_{\mathcal{M}(G)} \Rightarrow i_{*} i^{*} \stackrel{\theta^{-1}}{\cong} i_{!} i^{*} \Rightarrow \operatorname{Id}_{\mathcal{M}(G)}\right)=[G: H]$ for every subgroup inclusion $i: H \rightarrow G$.

Categorified Cartan-Eilenberg formula [Maillard '21]

Suppose \mathcal{M} is idempotent-complete and k-linear, with char $k=p>0$. If \mathcal{M} is cohomological, there is an equivalence

$$
\mathcal{M}(G) \simeq \operatorname{bilim}_{P \in \mathcal{T}_{P}(G)} \mathcal{M}(P)
$$

with the bilimit taken in $A D D_{k \text {-lin }}$ over the \boldsymbol{p}-transporter 2-category $\mathcal{T}_{p}(G)$.

- $\mathcal{T}_{p}(G)$ refines the fusion category $\mathcal{F}_{p}(G)$, which it admits as a quotient.
- $\mathcal{T}_{p}(G) \simeq \mathcal{O}_{p}(G)$, the usual orbit category of the orbits G / P.
- These \mathcal{M} 's are cohomological: $\mathcal{M}=\bmod (k-), D^{b}(k-)$, and $\underline{\bmod }(k-)$.
- But also equivariant sheaves on a G-variety X over $k: \operatorname{Sh}(X / / G)$ etc. Previous examples: just the case $X=\operatorname{Spec}(k)$ with trivial G-action! ©

Thank you for your attention!

