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We gave a mini-survey of Paul Balmer’s geometric theory of tensor triangulated
categories, or tensor triangular geometry, and applications. In the following, K =
(K,⊗, 1) will denote a tensor triangulated category, i.e., a triangulated category K
equipped with a tensor product (a symmetric monoidal structure) ⊗ : K×K → K
with unit object 1, such that a⊗− and −⊗ a are exact functors K → K for every
object a ∈ K. The main tool of tensor triangular geometry is the spectrum of a
tensor triangulated category:

Definition 1 ([Ba05]). Let K be an essentially small ⊗-triangulated category. A
prime ideal P of K is a proper (i.e., P 6= K) full triangulated subcategory P ⊂ K
which is: thick (i.e., a ⊕ b ∈ P ⇒ a, b ∈ P), ⊗-ideal (a ∈ P, x ∈ K ⇒ a ⊗ x ∈ K)
and prime (a ⊗ b ∈ P ⇒ a ∈ P or b ∈ P). The spectrum of K is the set of its
prime ideals:

Spc(K) := {P ⊂ K | P is a prime ideal of K}.
We give Spc(K) the topology determined by the following basis of closed subsets:

supp(a) := {P | a 6∈ P} = {P | a 6' 0 in K/P} ⊆ Spc(K) (for a ∈ K).

Remarks 2. (a) The space Spc(K) is always non-empty (if K 6' 0) and spectral, in
the sense of Hochster [Ho69]: it is quasi-compact, it has an open basis of quasi-
compact opens, and every irreducible closed subset has a unique generic point.

(b) Spc(K) is naturally equipped with a sheaf of rings OK. The ringed space

Spec(K) := (Spc(K),OK)

is always a locally ringed space ([Ba09b]) and sometimes a scheme (cf. Ex. 5.a-c).
(c) Every monoidal exact functor F : K → L induces a continuous map

Spc(L) → Spc(K) by P 7→ F−1P. This defines a functor Spec from the cate-
gory of ⊗-triangulated categories to that of locally ringed (spectral) spaces.

Universal property and classification. The support assignment supp : Ob(K)→
Closed(Spc(K)), a 7→ supp(a), is compatible with the ⊗-triangulated structure,
and is the finest such:

Proposition 3 (Universal property of (Spc(K), supp)). We have the following:
(1) supp(0) = ∅ and supp(1) = Spc(K)
(2) supp(a⊕ b) = supp(a) ∪ supp(b)
(3) supp(T (a)) = supp(a), where T : K ∼→ K is the translation of K
(4) supp(b) ⊆ supp(a) ∪ supp(c) for every exact triangle a→ b→ c→ T (a)
(5) supp(a⊗ b) = supp(a) ∩ supp(b).

Moreover, if (X,σ) is a pair where X is a topological space and σ is an assignment
from objects of K to closed subsets of X satisfying (1)-(5) above (we say that (X,σ)
is a support datum), then there exists a unique continuous map f : X → Spc(K)
such that σ(a) = f−1(supp(a)) for all objects a ∈ K.
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Theorem 4 (Classification [Ba05] [BKS07]). There is a bijection

{radical thick ⊗-ideals of K} ' {Thomason subsets of Spc(K)}
J 7→ supp(J ) := ∪a∈J supp(a)

{a ∈ K | supp(a) ⊆ Y } =: KY ←[ Y

(a ⊗-ideal J is radical if a⊗n ∈ J for some n ≥ 1 implies a ∈ J , and a subset
Y of the spectrum is Thomason if it is a union of closed subsets, each with quasi-
compact open complement). Moreover, if (X,σ) is a support datum inducing the
above bijection, then the canonical map f : X → Spc(K) is a homeomorphism.

By exploiting existing classifications of ⊗-ideals, the Classification theorem can
be used to provide concrete descriptions of the spectrum Spc(K) in examples
ranging over the most disparate branches of mathematics.

Examples 5. (a) (Algebraic geometry). Let X be a quasi-compact and quasi-
separated scheme, and let K := Dperf(X) be its derived category of perfect com-
plexes with ⊗ = ⊗LX and 1 = OX . From Thomason’s classification of thick tensor
ideals [Th97] we deduce a natural isomorphism Spec(Dperf(X)) ' X of schemes.
Thus tensor triangular geometry generalizes algebraic geometry ([Ba02] [Ba05]).

(b) (Commutative algebra) As a special case of (a), if R is any commutative
ring and K := Kb(R − proj) its bounded derived category of finitely generated
projective modules, then Spec(Kb(R− proj)) ' Spec(R) is the Zariski spectrum.

(c) (Modular representation theory). Let G be a finite group (or a finite
group scheme), and let k be a field with char(k) > 0. From the classification
in [BCR97] (resp., in [FP07]) of the thick ⊗-ideals in the stable category K :=
kG− stab of finite dimensional modules, with ⊗ = ⊗k and 1 = k, one deduces an
isomorphism Spec(kG− stab) ' Proj(H∗(G, k)) of projective varieties. Similarly,
Spec(Db(kG−mod)) ' Spech(H∗(G, k)), the spectrum of homogeneous primes.

(d) (Stable homotopy). Let K := SHfin be the homotopy category of fi-
nite spectra (of topology), i.e., the stable homotopy category of finite based CW-
complexes. The famous Thick Subcategory theorem of Hopkins and Smith [HS98]
translates neatly into a description of Spc(SHfin) in terms of the chromatic towers
at all prime numbers ([Ba09b]). Note that the ringed space Spec(SHfin) is not a
scheme.

Remark 6. Other concrete classifications known so far are: The category of perfect
complexes over a Deligne-Mumford stack [Kr08]; The category K = Bootc of
compact objects in the Bootstrap category of separable C*-algebras (the latter
simply yields Spec(Bootc) ' Spec(Z) [De09]).

Hypothesis 7. From now on, we assume that our tensor triangulated category
K is rigid, i.e., that there is an equivalence D : Kop ∼→ K with Hom(a ⊗ b, c) '
Hom(a,D(b) ⊗ c). Moreover, we assume that K is idempotent complete: if e =
e2 : a → a is an idempotent morphism in K, then a ' Ker(e) ⊕ Im(e). Both are
light hypotheses; e.g., they are satisfied by all categories in Example 5.
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Decomposition of objects. The support supp(a) can be used to decompose the
object a in K, or to test its indecomposability:

Theorem 8 ([Ba07]). Let K be a ⊗-triangulated category (see Hypothesis 7). Let
a ∈ K be an object such that supp(a) = Y1 ∪ Y2, where Y1 and Y2 are disjoint
Thomason subsets of Spc(K) (as in Thm. 4). Then there is a decomposition a '
a1 ⊕ a2 in K with supp(ai) = Yi (for i = 1, 2).

In modular representation theory (Example 5.c), for instance, the latter result
generalizes to finite group schemes a celebrated theorem of Carlson [Ca84], saying
that the projective support variety of a finitely generated indecomposable module
is connected. The corresponding statement, of course, is now available in all
examples.

Topological filtrations and local-to-global spectral sequences. Given a
reasonable notion of “dimension” for the closed subsets of Spc(K) (such as the
usual Krull dimension, or minus the Krull codimension in Spc(K)), one can pro-
duce filtrations of the category K of the form

0 ⊆ K(−∞) ⊆ · · · ⊆ K(n−1) ⊆ K(n) ⊆ K(n+1) ⊆ · · · ⊆ K(+∞) = K

where K(n) ⊆ K is the subcategory of those objects whose support has dimension
at most n (n ∈ Z ∪ {±∞}). Every term in the filtration is a thick triangulated
subcategory of the next one up, so the subquotients K(n)/K(n−1) are again trian-
gulated. Each has a decomposition into a sum of local terms. More precisely:

Theorem 9 ([Ba07]). Assume that the space Spc(K) is noetherian (i.e., every
open subset is quasi-compact). Then the quotient functors qP : K → K/P induce
a fully faithful triangulated functor

K(n)/K(n−1) −→
∐

P∈Spc(K) s.t. dim({P})=n

(K/P)(0)

which moreover is cofinal (that is, essentially surjective up to direct summands).

In algebraic geometry, the above decomposition is well known for regular schemes
and hides behind various local-to-global spectral sequences. Indeed, Theorem 9
becomes an essential ingredient in the following generalization to singular schemes
of Quillen’s [Qu73] classical construction of a local-to-global spectral sequence for
the algebraic K-theory of regular schemes:

Theorem 10 ([Ba09a]). Let X be any (topologically) noetherian scheme of finite
Krull dimension. Then there exists a cohomological spectral sequence

Ep,q1 =
⊕

x∈X(p)

K−p−q(OX,x on {x}) n=p+q
=⇒ K−n(X)

converging to the algebraic K-theory of X; the E1-page contains Thomason’s non-
connective K-theory of the local ring OX,x with support on the closed point x.
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Gluing of morphisms and objects. To each quasi-compact open set U ⊆
Spc(K) we associate the (again, rigid and idempotent complete) ⊗-triangulated

category K(U) := K̃/KY obtained by idempotent completing (see [BS01]) the
quotient of K by all objects supported on the complement Y := Spc(K) r U .
Given a covering Spc(K) = U1 ∪ U2, it is natural to ask if and how it is possible
to glue information in K(Ui) (i = 1, 2), compatible over K(U1 ∩ U2), in order to
provide information in K. The “gluing technique” of Balmer-Favi [BF07] provides
some general answers:

Theorem 11 (Mayer-Vietoris for morphisms). There is a long exact sequence

· · ·Hom12(a, T−1b) ∂→ Hom(a, b)→ Hom1(a, b)⊕Hom2(a, b)→ Hom12(a, b) ∂→ · · ·
of Hom groups for every two objects a, b ∈ K (here we use the short-hand notation
Hom = HomK, Homi = HomK(Ui) and Hom12 = HomK(U1∩U2), and we keep
writing a and b for the canonical images of a and b in the appropriate categories).

Theorem 12 (Gluing of two objects). Given two objects ai ∈ K(Ui) (i = 1, 2)
and an isomorphism σ : a1

∼→ a2 over U1 ∩U2, i.e., in K(U1 ∩U2), there exists an
(up to isomorphism, unique) object a ∈ K mapping to ai in K(Ui) (i = 1, 2).

The Picard group. For any ⊗-triangulated category K, define its Picard group
Pic(K) to be the abelian group of ⊗-invertible objects (i.e., those a ∈ K such that
there exists b ∈ K and an isomorphism a⊗ b ' 1), with ⊗ as group operation.

Examples 13. (a) For a scheme X, we have Pic(Dperf(X)) ' Pic(X)⊕ Z`, where
` is the number of connected components of X.

(b) For a finite group G and a field k, we recognise Pic(kG− stab) as the group
of endotrivial kG-modules, usually denoted T (G).

Theorem 12 supplies the connecting map δ used in the next result.

Theorem 14 (Mayer-Vietoris for Picard [BF07]). Let Spc(K) = U1∪U2 as above.
There is a long exact sequence (extending to the left as in Theorem 11)

· · · → HomK(U1∩U2)(1, T−11) 1+∂→

Gm(K)→ Gm(K(U1))⊕Gm(K(U2))→ Gm(K(U1 ∩ U2)) δ→
Pic(K)→ Pic(K(U1))⊕ Pic(K(U2))→ Pic(K(U1 ∩ U2)).

Here Gm(L) := EndL(1)× denotes the automorphism group of the tensor unit 1 in
a ⊗-triangulated category L.

Applications of gluing to modular representation theory. The authors
of [BBC08] compare the above gluing techniques with similar-minded uses of
Rickard’s idempotent modules ([Ri97]) in modular representation theory. Among
other things, they provide a new proof for Alperin’s computation ([Al01] [Ca06])
of the rank of the group T (G) in terms of the number of conjugacy classes of
maximal elementary abelian subgroups of G. They also show that the above glu-
ing technique provides a subgroup of finite index inside T (G). Further enquiry
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along these lines brings to light the following deep connection between algebraic
geometry and modular representation theory:

Theorem 15 ([Ba08]). Let G be a finite group and k a field of positive charac-
teristic. Then the gluing construction induces an isomorphism

Pic
(
Proj(H∗(G, k))

)
⊗Z Q ∼−→ T (G)⊗Z Q.

which rationally identifies the Picard group of line bundles on the projective variety
of G with the group of endotrivial kG-modules.
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