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The Witt groups of the spheres away from two
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Abstract

We calculate the Witt groups of the spheres up to 2-primary torsion.
c© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Let A be a Gorenstein ring of finite Krull dimension with 1
2 ∈ A. Denote the coordinate ring of the n-sphere

over A by

Sn
A := A[X1, . . . , Xn+1]/(X

2
1 + · · · + X2

n+1 − 1),

and let

PSn
A := Proj A[X0, . . . , Xn+1]/(X

2
0 + · · · + X2

n − X2
n+1)

be the corresponding projective scheme.
We are interested in determining the (total) coherent Witt groups of these varieties, which are still unknown, in

terms of the Witt groups of the base A. As a first step we obtain the following two theorems, with the hope one day of
determining also the 2-primary torsion. We abbreviate:

W
i
(X) := W̃i (X)⊗ Z[1/2], W

tot
(X) :=

⊕
0≤i≤3

W
i
(X).

Theorem 1.1. For all i , we have isomorphisms

W
i
(Sn

A) ' W
i
(PSn

A) ' W
i
(A)⊕ W

i−n
(A).
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If the base A is regular, then Sn
A is also regular and its coherent and derived (locally free) Witt groups are

isomorphic. The tensor product induces a natural structure of Z/4-graded rings on Wtot(A) and Wtot(Sn), denoted
by ? (see [9]). If q : Spec Sn

→ Spec A denotes the canonical projection, then q∗ makes Wtot(Sn) a Z/4-graded
Wtot(A)-algebra. All this remains true of course for W

tot
. Our geometric proof of Theorem 1.1 lets us easily find this

multiplicative structure:

Theorem 1.2. Moreover let A be regular. Then

W
tot
(Sn

A) ' W
tot
(A)[α]/(α2),

with α sitting in degree n.

Remarks. (a) By Proposition 3.1 below, we see that our calculation produces non-trivial groups only when the base
ring A has characteristic 0 (that is, when Z ⊂ A).

(b) Theorem 1.1 follows also from the general results of Brumfiel in [3,4]. In [3,4] Brumfiel sketches the
development of a theory KO−n(Sper A) inspired by the usual (real) topological K -theory of spaces, and which
depends only on the real spectrum Sper A (equipped with its sheaf of abstract semi-algebraic functions). One of
the main results of Brumfiel is that there are natural isomorphisms

WK
n (A)⊗ Z[1/2] ' KO−n(Sper A)⊗ Z[1/2] (n ≥ 0),

where WK
n are Karoubi’s Witt groups. By identifying W

n
(A) ' WK

n (A) ⊗ Z[
1
2 ] on the left-hand side [10, Lemma

A.3], and by reducing Brumfiel’s theory to the usual K -theory of some space on the right-hand side, one can use
topological results to calculate Balmer–Witt groups tensored with Z[

1
2 ]. We can avoid all this, our approach here

being much simpler and completely geometric in nature. Our main tools will be the 12-periodic localization long
exact sequence, homotopy invariance and dévissage (see [1] for an overview and references).

2. Transfer and dévissage

We recall here some technical facts, for the convenience of the reader. Given a finite dimensional Gorenstein
scheme X with 1

2 ∈ OX (X) and a line bundle L on it, the coherent Witt groups W̃i (X,L) depend on X , L and
also on a choice of an injective resolution of L [5]. Thus when we write W̃i (X) := W̃i (X,OX ) we tacitly choose
such a resolution. Given a finite morphism f : Y → X of pure relative dimension d, Gille constructed transfer
(push-forward) morphisms

f∗ : W̃i (Y, f
∗
ExtdOX

( f∗OY ,OX )) → W̃i+d(X)

(see e.g. [8, section 2]). Transfers are functorial: for two composable morphisms f and g, one can choose the injective
resolutions so that (g f )∗ = g∗ f∗.

Let now Y be a connected Gorenstein closed subscheme of X of codimension d, and let f : Y ↪→ X be the
inclusion. Then the transfers induce “dévissage” isomorphisms

f∗ : W̃i (Y, f
∗
ExtdOX

( f∗OY ,OX )) → W̃i+d
Y (X),

for all i ([8, Thm.3.2]), where the groups on the right are the Witt groups with support appearing in the localization
sequence.

It happens sometimes that the sheaf f
∗
ExtdOX

( f∗OY ,OX ) is isomorphic to OY , e.g. when Y = Spec A is affine
and f : Spec A/I → Spec A is a closed immersion whose defining ideal I can be given by a regular sequence
(a1, . . . , ad) in A. In this case, every choice of a sequence gives an isomorphism OY ' f

∗
ExtdOY

( j∗OX ,OY ) by
sending 1 ∈ OY to the Koszul complex of A/(a1 . . . , ad), and therefore an isomorphism of Witt groups

φ : W̃i (Y ) → W̃i (Y, f
∗
ExtdOX

( f∗OY ,OX )).

In what follows we will make this choice tacitly and will still write f∗ : W̃i (Y ) ' W̃i+d
Y (X) for the composite

isomorphism f∗ ◦ φ.
Observe also that for flat morphisms g : X → Y the usual contravariant functoriality of derived Witt groups,

written as g∗
: Wi (Y ) → Wi (X), works just as well for coherent Witt groups.
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3. Proof of Theorem 1.1

The case n = 0 is trivial. We have isomorphisms

Spec S0
' Proj A[X0, X1]/(X

2
0 − X2

1) ' Spec (A × A)

and thus W̃i (S0) ' W̃i (PS0) ' W̃i (A)⊕ W̃i (A).
For the rest of the proof we can assume n ≥ 1. The following proposition is the main component of our calculation.

Proposition 3.1. Let X be a finite dimensional Gorenstein scheme with 1
2 ∈ OX (X), such that none of its residue

fields admits a total ordering (i.e., it has no ‘real points’). Let Z ⊂ X be a closed subset, and let L be a line bundle
over X. Then all the coherent Witt groups W̃i

Z (X,L) of X with support in Z and values in L are 2-primary torsion
groups.

Proof. For any field K , the classical Pfister local–global principle (see e.g. [11, VIII Thm. 3.2]) implies that if K is
nonreal (i.e., iff K does not admit a total ordering, iff −1 is a sum of squares in K ) then W(K ) is a 2-primary torsion
group. The groups in the initial page of the Gersten–Witt spectral sequence for (X,L) with support in Z (see Balmer
and Walter [2, Thm. 7.2], Gille [5, Thm. 3.14]) consist of sums of Witt groups W(k(x)) of the residue fields of X , thus
with the above hypothesis they are 2-primary torsion. But the spectral sequence converges to the groups W̃i

Z (X,L)
because X is finite dimensional. �

Corollary 3.2. Let X be a finite dimensional separated Gorenstein scheme with 1
2 ∈ OX (X), and let XQ := X ×Spec Z

Spec Q. Then the canonical projection XQ → X induces isomorphisms W
i
(X) ' W

i
(XQ) for all i .

Proof. Let first X = Spec R be affine. Notice that a ring R satisfies the non-reality hypothesis of Proposition 3.1 if
−1 is a sum of squares in R. Thus we can assume that the characteristic of R is 0, the other case being trivial. Consider
for m ≥ 2 the localization long exact sequence

· · · −→ W̃i
(m)(A) −→ W̃i (A) −→ W̃i (A[1/m]) −→ · · · .

Dévissage and Proposition 3.1 imply that W
i
(m)(A) ' 0, so we obtain W

i
(A) ' W

i
(A[1/m]). Now A ⊗ Q '

colimm A[1/m] and Witt groups commute with filtering colimits [6, Thm. 1.6], therefore W
i
(A) ' W

i
(A ⊗ Q). For

X separated, the global case can be obtained with Mayer-Vietoris. �

Notation. In the following, we will write

Cn
= Cn

A :=
A[X1, . . . , Xn]

(1 + X2
1 + · · · + X2

n)
.

An immediate corollary of Proposition 3.1 is that W
i
(Cn) ' 0 for all i .

Now, the intersection of the projective sphere PSn
= V (Σk X2

k − X2
n+1) ⊂ Pn+1 with the affine open D(Xn+1)

= {Xn+1 6= 0} ⊂ Pn+1 is isomorphic to the affine sphere Spec Sn . We have

Lemma 3.3. The open immersion Spec Sn
' D(Xn+1) ↪→ PSn induces isomorphisms W

i
(PSn) ' W

i
(Sn).

Proof. We have a localization sequence

· · · // W̃i
(Xn+1)

(PSn) // W̃i (PSn) // W̃i (Sn) // · · · . (1)

Denote by PCn the closed projective subscheme V (Xn+1) ⊂ PSn , i.e. PCn
= V (X2

0 +· · ·+ X2
n) ⊂ Pn . By dévissage

we have isomorphisms

W̃i
(Xn+1)

(PSn) ' W̃i−1(PCn,Ln), (2)

where Ln is some line bundle over PCn (n ≥ 1). On the affine opens D(X i ) = {X i 6= 0} (i = 0, . . . , n), the scheme

PCn is isomorphic to Cn ; thus PCn clearly satisfies the hypothesis of Proposition 3.1 and therefore W
i
(PCn,Ln) = 0.

Then the exactness of (1) implies the claim. �
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Lemma 3.4. Write f := 1 + X2
1 + · · · + X2

n ∈ A[X1, . . . , Xn], and denote by An
f the corresponding open subscheme

in the affine plane. Then we have isomorphisms Sn
1−Xn+1

' An
f .

Proof. The isomorphism is given by the stereographic projection. Indeed, writing U := Sn
1−Xn+1

and V :=

A[Y1, . . . , Yn]1+Y 2
1 +···+Y 2

n
for the localized rings, we define a morphism V → U by

Y` 7→
X`

1 − Xn+1
(` = 1, . . . , n).

Its inverse is given by

Xn+1 7→
ΣkY 2

k − 1

ΣkY 2
k + 1

, X` 7→
2Y`

ΣkY 2
k + 1

(` = 1, . . . , n).

(Recall that 2 is invertible in A.) �

Lemma 3.5. The projection p : An
f → Spec A induces an isomorphism p∗

: W
i
(A) ' W

i
(An

f ).

Proof. We use the localization long exact sequence:

. . . // W
i
( f )(An) // W

i
(An)

// W
i
(An

f )
// . . . .

Since f = 1 + X2
1 + · · · + X2

n is a regular element, by dévissage we have

W
i
( f )(A

n) ' W
i
(Cn).

Because of Proposition 3.1, the latter is zero. Now we use homotopy invariance of coherent Witt groups to
conclude. �

Lemma 3.6. There are split short exact sequences

0 // W
i
(1−Xn+1)

(Sn) // W
i
(Sn)

// W
i
(A) // 0.

Proof. Consider the long exact sequence associated with the localization Sn
→ Sn

1−Xn+1
:

. . . // W
i
(1−Xn+1)

(Sn) // W
i
(Sn)

// W
i
(Sn

1−Xn+1
) // W

i+1
(1−Xn+1)

(Sn) // . . . ,

and consider the projection q : Spec Sn
→ Spec A. We then have a commutative diagram

Spec Sn

q
&&MMMMMMMMMMM

Spec Sn
1−Xn+1

ioo

p

��
Spec A

where i is the inclusion. Using Lemma 3.5 and the fact that Spec Sn
1−Xn+1

' An
f (Lemma 3.4), we obtain a

commutative diagram

W
i
(Sn)

i∗ // W
i
(An

f )

W
i
(A)

p∗ '

OO

q∗

ddHHHHHHHHH

The above long exact sequence yields finally the split sequences

0 // W
i
(1−Xn+1)

(Sn) // W
i
(Sn)

// W
i
(A) // 0. �
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Corollary 3.7. For any i , we have W
i
(Sn) ' W

i
(A)⊕ W

i
(1−Xn+1)

(Sn).

Next we compute W
i
(1−Xn+1)

(Sn). In order to do this, we introduce another notation:

Notation.

Bn
= Bn

A :=
A[X1, . . . , Xn]

(X2
1 + · · · + X2

n)
.

Thus we have isomorphisms Sn/(1 − Xn+1) ' Bn . For n ≥ 1, the element 1 − Xn+1 ∈ Sn is regular and we can
use dévissage to obtain:

W̃i
(1−Xn+1)

(Sn) ' W̃i−1(Bn). (3)

Notice en passant that the rings Bn are singular. This makes the use of coherent (rather that derived) Witt groups
necessary for our calculation, even when A is regular.

Lemma 3.8. For n ≥ 1 and any i , we have W
i
(Bn) ' W

i−n+1
(A).

Proof. We will exploit the recursive property Bn/(Xn) ' Bn−1. Consider the long exact sequence

· · · // W̃i
(Xn)

(Bn) // W̃i (Bn) // W̃n(Bn
Xn
) // · · ·

associated with the localization Bn
→ Bn

Xn
. Notice that Bn

Xn
' Cn−1

[Xn, X−1
n ]. It is a result of Gille that

W̃i (R[T, T −1
]) ' W̃i (R)⊕ W̃i (R) for R a finite dimensional Gorenstein ring (see [5, Thm. 5.6]). Thus we have

W
i
(Bn

Xn
) ' W

i
(Cn−1)⊕ W

i
(Cn−1) = 0,

where the vanishing is due to Proposition 3.1. For n ≥ 2, the element Xn ∈ Bn is regular, so dévissage yields

W̃i
(Xn)

(Bn) ' W̃i−1(Bn/Xn) = W̃i−1(Bn−1).

Altogether, we obtain the formula W
i
(Bn) ' W

i−1
(Bn−1) (n ≥ 2). We finish the proof by remarking that

W̃ j (B1) ' W̃ j (A) for all j . (For example, one can use the generalization of affine dévissage to zero dimensional
ideals, see [6, Thm. 3.5]: W̃ j (A[X ]/X2) = W̃ j

(X)(A[X ]/X2) ' W̃ j ((A[X ]/X2)/X) = W̃ j (A).) �

Finally, we have W
i
(Sn) ' W

i
(A)⊕W

i
1−Xn+1

(Sn) by Corollary 3.7 and W
i
1−Xn+1

(Sn) ' W
i−n
(A) by Eq. (3) and

the last lemma. Together with Lemma 3.3, this ends the proof of Theorem 1.1.

4. Proof of Theorem 1.2

From now on, the base A and thus also Sn
A will be assumed to be regular rings. We will still denote by

q : Spec Sn
→ Spec A the structure morphism.

For any ring R, we will denote by eR ∈ W0(R) the multiplicative unit of Wtot(R); this is just the diagonal form
〈1〉 = [id : R → R] (we make the usual identification R = R∨). In this proof we will also abbreviate

P := Sn/(X1, . . . , Xn)

n := (Xn+1 − 1) s := (Xn+1 + 1),

so that P/n ' A and P/s ' A are the North Pole and the South Pole of the sphere. Write iP , iN and iS for the
corresponding closed immersions. We will further write

αN := iN ∗(eP/n) ∈ Wn(Sn), αS := iS∗(eP/s) ∈ Wn(Sn),

and we will keep the same notation for the images in W
n
(Sn) of these forms.

The next lemma is just a corollary of the proof of Theorem 1.1.
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Lemma 4.1.

W
tot
(Sn) = W

tot
(A) · eSn ⊕ W

tot
(A) · αN .

Proof. From the proof of Lemma 3.6 we see that q∗
: W

tot
(A) → W

tot
(Sn) is injective. Since q∗(eA) = eSn , we

recognize the first direct summand. By the proof of Lemma 3.8 and functoriality of the transfer (see Section 2 above),
we see that the other summand is the image of iN ∗ : W

tot
(P/n) → W

tot
(Sn). This image is W

tot
(A) · αN by the

following lemma. �

Lemma 4.2. Let i : Spec A ↪→ Spec Sn be the closed immersion corresponding either to the North or the South pole,
and let i∗ : W j (A) → W j+n(Sn) be the induced transfer morphism. Then for every form β ∈ W j (A):

i∗(β) = q∗(β) ? i∗(eA) ∈ W j+n(Sn).

Proof. This follows from the projection formula for coherent Witt groups (Gille [7, Thm. 5.2]), applied to the finite
morphism i :

i∗(β) = i∗(i
∗q∗︸︷︷︸
id

(β) ? eA) = q∗(β) ? i∗(eA). �

Proposition 4.3. The relation αN = −αS holds in Wn(Sn).

As an immediate consequence of this, the form α2
N = −αN ? αS is supported on the intersection of the North and

the South Poles, which is empty: Spec P/n ∩ Spec P/s = ∅; so it is trivially equal to zero.
To prove Proposition 4.3, we first recall straight from [7, Section 9] some facts about forms on Koszul complexes.

For any ring R and any regular sequence (x1, . . . , xn) in R, we will denote by K•(x1, . . . , xn) the Koszul complex
for this sequence, and we set it in (homological) degrees from n to 0. (Below we will specialize to the ring Sn and the
regular sequence (X1, . . . , Xn) in it.) For 1 ≤ i ≤ n and any unit r ∈ R×, the complex K•(xi ) can be equipped by
the following symmetric 1-form:

K•(xi ) :

`r :=

��

· · · // 0

��

// R
·xi //

·r

��

R //

·(−r)

��

0

��

// · · ·

K•(xi ) : · · · // 0 // R
·(−xi ) // R // 0 // · · ·

For any choice of n units in R, the product (K•(x1), `r1)? · · ·?(K•(xn), `rn ) is a symmetric n-space on the complex
K•(x1, . . . , xn) ' K•(x1)⊗ · · · ⊗ K•(xn). We denote its form by `r1···rn .

By displaying an explicit Lagrangian, it is easy to see that [K•(xi ), `ri ] = 0 ∈ Wn(R), and therefore
[K•(x1, . . . , xn), `r1···rn ] = 0 ∈ Wn(R) for all symmetric spaces as above.

Lemma 4.4. If φ : K•(x1, . . . , xn) → HomR(K•(x1, . . . , xn), R)[n] is a quasi-isomorphism of complexes, then there
exists a unit r ∈ R× such that `r ·1···1 is chain homotopic to φ.

Proof. This is a slight generalization of [7, Lemma 9.1]. The same proof goes through. �

We have an isomorphism W0(P) ' W0(P/n)⊕ W0(P/s), induced by P ' P/n × P/s, which identifies eP with
(eN , eS). Under this isomorphism, the transfer iP ∗ : W0(P) → Wn(Sn) identifies with (iN ∗, iS∗), and in particular

αN + αS = iN ∗(eN )+ iS∗(eS) = iP ∗(eP ).

But the last term is zero in Wn(Sn). In fact, iP ∗(eP ) can be represented by (F•, ψ), where F• is a projective
resolution of the Sn-module P = Sn/(X1, . . . , Xn), and where ψ is a symmetric quasi-isomorphism between F•

and its n-shifted dual, lying above the morphism id : A → A. Since (X1, . . . , Xn) is a regular sequence in Sn ,
we can take F• to be the Koszul complex for this sequence. By the above lemma (or by direct inspection) we have
i A∗(eA) = [K•(X1, . . . , Xn), `1] = 0 ∈ Wn(Sn).

This ends the proof of our second theorem.
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[3] G.W. Brumfiel, Witt rings and K -theory, Rocky Mountain J. Math. 14 (4) (1984) 733–765.
[4] G.W. Brumfiel, The real spectrum of an ideal and KO-theory exact sequences, K -Theory 1 (3) (1987) 211–235.
[5] Stefan Gille, On Witt groups with support, Math. Ann. 322 (1) (2002) 103–137.
[6] Stefan Gille, Homotopy invariance of coherent Witt groups, Math. Z. 244 (2003) 211–233.
[7] Stefan Gille, A transfer morphism for Witt groups, J. Reine Angew. Math. 564 (2003) 215–233.
[8] Stefan Gille, The general dévissage theorem for Witt groups of schemes, Arch. Math. 88 (2007) 333–343.
[9] S. Gille, A. Nenashev, Pairings in triangular Witt theory, J. Algebra 261 (2) (2003) 292–309.

[10] J. Hornbostel, M. Schlichting, Localization in Hermitian K -theory of rings, J. London Math. Soc. (2) 70 (1) (2004) 77–124.
[11] Tsit-Yuen Lam, Introduction to quadratic forms over fields, in: Graduate Studies in Math., vol. 67, American Math. Soc., Providence, 2005.


	The Witt groups of the spheres away from two
	Introduction
	Transfer and dévissage
	Proof of Theorem 1.1
	Proof of Theorem 1.2
	Acknowledgements
	References


