

Available online at www.sciencedirect.com

JOURNAL OF PURE AND APPLIED ALGEBRA

Journal of Pure and Applied Algebra 212 (2008) 1039-1045

www.elsevier.com/locate/jpaa

The Witt groups of the spheres away from two

Ivo Dell'Ambrogio*, Jean Fasel

ETH Zentrum, 8092 Zürich, Switzerland

Received 11 May 2007; received in revised form 13 June 2007; accepted 23 July 2007 Available online 14 September 2007

Communicated by F. Morel

Abstract

We calculate the Witt groups of the spheres up to 2-primary torsion. © 2007 Elsevier B.V. All rights reserved.

1. Introduction

Let A be a Gorenstein ring of finite Krull dimension with $\frac{1}{2} \in A$. Denote the coordinate ring of the *n*-sphere over A by

$$S_A^n := A[X_1, \dots, X_{n+1}]/(X_1^2 + \dots + X_{n+1}^2 - 1),$$

and let

$$\mathbb{P}S_A^n := \operatorname{Proj} A[X_0, \dots, X_{n+1}] / (X_0^2 + \dots + X_n^2 - X_{n+1}^2)$$

be the corresponding projective scheme.

We are interested in determining the (total) coherent Witt groups of these varieties, which are still unknown, in terms of the Witt groups of the base *A*. As a first step we obtain the following two theorems, with the hope one day of determining also the 2-primary torsion. We abbreviate:

$$\overline{\mathbf{W}}^{i}(X) \coloneqq \widetilde{\mathbf{W}}^{i}(X) \otimes \mathbb{Z}[1/2], \qquad \overline{\mathbf{W}}^{\text{tot}}(X) \coloneqq \bigoplus_{0 \le i \le 3} \overline{\mathbf{W}}^{i}(X).$$

Theorem 1.1. For all i, we have isomorphisms

$$\overline{\mathrm{W}}^{i}(S_{A}^{n})\simeq\overline{\mathrm{W}}^{i}(\mathbb{P}S_{A}^{n})\simeq\overline{\mathrm{W}}^{i}(A)\oplus\overline{\mathrm{W}}^{i-n}(A).$$

^{*} Corresponding address: Department of Mathematics, ETH Zentrum, 8092 Zürich, Switzerland.

E-mail addresses: ambrogio@math.ethz.ch (I. Dell'Ambrogio), jean.fasel@math.ethz.ch (J. Fasel).

^{0022-4049/\$ -} see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jpaa.2007.07.015

If the base A is regular, then S_A^n is also regular and its coherent and derived (locally free) Witt groups are isomorphic. The tensor product induces a natural structure of $\mathbb{Z}/4$ -graded rings on $W^{tot}(A)$ and $W^{tot}(S^n)$, denoted by \star (see [9]). If q: Spec $S^n \to$ Spec A denotes the canonical projection, then q^* makes $W^{tot}(S^n)$ a $\mathbb{Z}/4$ -graded $W^{tot}(A)$ -algebra. All this remains true of course for \overline{W}^{tot} . Our geometric proof of Theorem 1.1 lets us easily find this multiplicative structure:

Theorem 1.2. Moreover let A be regular. Then

$$\overline{\mathrm{W}}^{\mathrm{tot}}(S_A^n) \simeq \overline{\mathrm{W}}^{\mathrm{tot}}(A)[\alpha]/(\alpha^2),$$

with α sitting in degree n.

Remarks. (a) By Proposition 3.1 below, we see that our calculation produces non-trivial groups only when the base ring *A* has characteristic 0 (that is, when $\mathbb{Z} \subset A$).

(b) Theorem 1.1 follows also from the general results of Brumfiel in [3,4]. In [3,4] Brumfiel sketches the development of a theory $KO^{-n}(Sper A)$ inspired by the usual (real) topological *K*-theory of spaces, and which depends only on the real spectrum Sper A (equipped with its sheaf of abstract semi-algebraic functions). One of the main results of Brumfiel is that there are natural isomorphisms

$$W_n^K(A) \otimes \mathbb{Z}[1/2] \simeq \mathrm{KO}^{-n}(\mathrm{Sper}\,A) \otimes \mathbb{Z}[1/2] \quad (n \ge 0),$$

where W_n^K are Karoubi's Witt groups. By identifying $\overline{W}^n(A) \simeq W_n^K(A) \otimes \mathbb{Z}[\frac{1}{2}]$ on the left-hand side [10, Lemma A.3], and by reducing Brumfiel's theory to the usual *K*-theory of some space on the right-hand side, one can use topological results to calculate Balmer–Witt groups tensored with $\mathbb{Z}[\frac{1}{2}]$. We can avoid all this, our approach here being much simpler and completely geometric in nature. Our main tools will be the 12-periodic localization long exact sequence, homotopy invariance and dévissage (see [1] for an overview and references).

2. Transfer and dévissage

We recall here some technical facts, for the convenience of the reader. Given a finite dimensional Gorenstein scheme X with $\frac{1}{2} \in \mathcal{O}_X(X)$ and a line bundle \mathcal{L} on it, the coherent Witt groups $\tilde{W}^i(X, \mathcal{L})$ depend on X, \mathcal{L} and also on a choice of an injective resolution of \mathcal{L} [5]. Thus when we write $\tilde{W}^i(X) := \tilde{W}^i(X, \mathcal{O}_X)$ we tacitly choose such a resolution. Given a finite morphism $f : Y \to X$ of pure relative dimension d, Gille constructed transfer (push-forward) morphisms

$$f_*: \tilde{W}^i(Y, \overline{f}^* \operatorname{Ext}^d_{\mathcal{O}_X}(f_*\mathcal{O}_Y, \mathcal{O}_X)) \to \tilde{W}^{i+d}(X)$$

(see *e.g.* [8, section 2]). Transfers are functorial: for two composable morphisms f and g, one can choose the injective resolutions so that $(gf)_* = g_* f_*$.

Let now Y be a connected Gorenstein closed subscheme of X of codimension d, and let $f : Y \hookrightarrow X$ be the inclusion. Then the transfers induce "dévissage" isomorphisms

$$f_*: \tilde{W}^i(Y, \overline{f}^* \operatorname{Ext}^d_{\mathcal{O}_X}(f_*\mathcal{O}_Y, \mathcal{O}_X)) \to \tilde{W}^{i+d}_Y(X),$$

for all *i* ([8, Thm.3.2]), where the groups on the right are the Witt groups with support appearing in the localization sequence.

It happens sometimes that the sheaf $\overline{f}^* \operatorname{Ext}_{\mathcal{O}_X}^d(f_*\mathcal{O}_Y, \mathcal{O}_X)$ is isomorphic to \mathcal{O}_Y , *e.g.* when $Y = \operatorname{Spec} A$ is affine and $f : \operatorname{Spec} A/I \to \operatorname{Spec} A$ is a closed immersion whose defining ideal I can be given by a regular sequence (a_1, \ldots, a_d) in A. In this case, every choice of a sequence gives an isomorphism $\mathcal{O}_Y \simeq \overline{f}^* \operatorname{Ext}_{\mathcal{O}_Y}^d(j_*\mathcal{O}_X, \mathcal{O}_Y)$ by sending $1 \in \mathcal{O}_Y$ to the Koszul complex of $A/(a_1 \ldots, a_d)$, and therefore an isomorphism of Witt groups

$$\phi: \tilde{W}^{i}(Y) \to \tilde{W}^{i}(Y, \overline{f}^{*} \operatorname{Ext}^{d}_{\mathcal{O}_{Y}}(f_{*}\mathcal{O}_{Y}, \mathcal{O}_{X})).$$

In what follows we will make this choice tacitly and will still write $f_* : \tilde{W}^i(Y) \simeq \tilde{W}^{i+d}_Y(X)$ for the composite isomorphism $f_* \circ \phi$.

Observe also that for flat morphisms $g : X \to Y$ the usual contravariant functoriality of derived Witt groups, written as $g^* : W^i(Y) \to W^i(X)$, works just as well for coherent Witt groups.

3. Proof of Theorem 1.1

The case n = 0 is trivial. We have isomorphisms

Spec
$$S^0 \simeq \operatorname{Proj} A[X_0, X_1]/(X_0^2 - X_1^2) \simeq \operatorname{Spec} (A \times A)$$

and thus $\tilde{W}^i(S^0) \simeq \tilde{W}^i(\mathbb{P}S^0) \simeq \tilde{W}^i(A) \oplus \tilde{W}^i(A)$.

For the rest of the proof we can assume $n \ge 1$. The following proposition is the main component of our calculation.

Proposition 3.1. Let X be a finite dimensional Gorenstein scheme with $\frac{1}{2} \in \mathcal{O}_X(X)$, such that none of its residue fields admits a total ordering (i.e., it has no 'real points'). Let $Z \subset X$ be a closed subset, and let \mathcal{L} be a line bundle over X. Then all the coherent Witt groups $\tilde{W}^i_Z(X, \mathcal{L})$ of X with support in Z and values in \mathcal{L} are 2-primary torsion groups.

Proof. For any field *K*, the classical Pfister local–global principle (see *e.g.* [11, VIII Thm. 3.2]) implies that if *K* is nonreal (*i.e.*, iff *K* does not admit a total ordering, iff -1 is a sum of squares in *K*) then W(*K*) is a 2-primary torsion group. The groups in the initial page of the Gersten–Witt spectral sequence for (*X*, \mathcal{L}) with support in *Z* (see Balmer and Walter [2, Thm. 7.2], Gille [5, Thm. 3.14]) consist of sums of Witt groups W(k(x)) of the residue fields of *X*, thus with the above hypothesis they are 2-primary torsion. But the spectral sequence converges to the groups $\tilde{W}_Z^i(X, \mathcal{L})$ because *X* is finite dimensional. \Box

Corollary 3.2. Let X be a finite dimensional separated Gorenstein scheme with $\frac{1}{2} \in \mathcal{O}_X(X)$, and let $X_{\mathbb{Q}} := X \times_{\text{Spec } \mathbb{Z}}$ Spec \mathbb{Q} . Then the canonical projection $X_{\mathbb{Q}} \to X$ induces isomorphisms $\overline{W}^i(X) \simeq \overline{W}^i(X_{\mathbb{Q}})$ for all *i*.

Proof. Let first X = Spec R be affine. Notice that a ring R satisfies the non-reality hypothesis of Proposition 3.1 if -1 is a sum of squares in R. Thus we can assume that the characteristic of R is 0, the other case being trivial. Consider for $m \ge 2$ the localization long exact sequence

$$\cdots \longrightarrow \tilde{W}^{i}_{(m)}(A) \longrightarrow \tilde{W}^{i}(A) \longrightarrow \tilde{W}^{i}(A[1/m]) \longrightarrow \cdots$$

Dévissage and Proposition 3.1 imply that $\overline{W}_{(m)}^{i}(A) \simeq 0$, so we obtain $\overline{W}^{i}(A) \simeq \overline{W}^{i}(A[1/m])$. Now $A \otimes \mathbb{Q} \simeq \operatorname{colim}_{m} A[1/m]$ and Witt groups commute with filtering colimits [6, Thm. 1.6], therefore $\overline{W}^{i}(A) \simeq \overline{W}^{i}(A \otimes \mathbb{Q})$. For X separated, the global case can be obtained with Mayer-Vietoris. \Box

Notation. In the following, we will write

$$C^{n} = C^{n}_{A} \coloneqq \frac{A[X_{1}, \dots, X_{n}]}{(1 + X^{2}_{1} + \dots + X^{2}_{n})}$$

An immediate corollary of Proposition 3.1 is that $\overline{W}^i(C^n) \simeq 0$ for all *i*.

Now, the intersection of the projective sphere $\mathbb{P}S^n = V(\Sigma_k X_k^2 - X_{n+1}^2) \subset \mathbb{P}^{n+1}$ with the affine open $D(X_{n+1}) = \{X_{n+1} \neq 0\} \subset \mathbb{P}^{n+1}$ is isomorphic to the affine sphere Spec S^n . We have

Lemma 3.3. The open immersion Spec $S^n \simeq D(X_{n+1}) \hookrightarrow \mathbb{P}S^n$ induces isomorphisms $\overline{W}^i(\mathbb{P}S^n) \simeq \overline{W}^i(S^n)$.

Proof. We have a localization sequence

$$\cdots \longrightarrow \tilde{W}^{i}_{(X_{n+1})}(\mathbb{P}S^{n}) \longrightarrow \tilde{W}^{i}(\mathbb{P}S^{n}) \longrightarrow \tilde{W}^{i}(S^{n}) \longrightarrow \cdots$$
(1)

Denote by $\mathbb{P}C^n$ the closed projective subscheme $V(X_{n+1}) \subset \mathbb{P}S^n$, *i.e.* $\mathbb{P}C^n = V(X_0^2 + \dots + X_n^2) \subset \mathbb{P}^n$. By dévissage we have isomorphisms

$$\tilde{W}^{i}_{(X_{n+1})}(\mathbb{P}S^{n}) \simeq \tilde{W}^{i-1}(\mathbb{P}C^{n}, \mathcal{L}_{n}),$$
⁽²⁾

where \mathcal{L}_n is some line bundle over $\mathbb{P}C^n$ $(n \ge 1)$. On the affine opens $D(X_i) = \{X_i \ne 0\}$ (i = 0, ..., n), the scheme $\mathbb{P}C^n$ is isomorphic to C^n ; thus $\mathbb{P}C^n$ clearly satisfies the hypothesis of Proposition 3.1 and therefore $\overline{W}^i(\mathbb{P}C^n, \mathcal{L}_n) = 0$. Then the exactness of (1) implies the claim. \Box

Lemma 3.4. Write $f := 1 + X_1^2 + \dots + X_n^2 \in A[X_1, \dots, X_n]$, and denote by \mathbb{A}_f^n the corresponding open subscheme in the affine plane. Then we have isomorphisms $S_{1-X_{n+1}}^n \simeq \mathbb{A}_f^n$.

Proof. The isomorphism is given by the stereographic projection. Indeed, writing $U := S_{1-X_{n+1}}^n$ and $V := A[Y_1, \ldots, Y_n]_{1+Y_1^2+\cdots+Y_n^2}$ for the localized rings, we define a morphism $V \to U$ by

$$Y_\ell \mapsto \frac{X_\ell}{1 - X_{n+1}}$$
 $(\ell = 1, \dots, n).$

Its inverse is given by

$$X_{n+1} \mapsto \frac{\Sigma_k Y_k^2 - 1}{\Sigma_k Y_k^2 + 1}, \qquad X_\ell \mapsto \frac{2Y_\ell}{\Sigma_k Y_k^2 + 1} \quad (\ell = 1, \dots, n)$$

(Recall that 2 is invertible in A.) \Box

Lemma 3.5. The projection $p : \mathbb{A}_{f}^{n} \to \text{Spec } A$ induces an isomorphism $p^{*} : \overline{W}^{i}(A) \simeq \overline{W}^{i}(\mathbb{A}_{f}^{n})$.

Proof. We use the localization long exact sequence:

$$\cdots \longrightarrow \overline{W}^{i}_{(f)}(\mathbb{A}^{n}) \longrightarrow \overline{W}^{i}(\mathbb{A}^{n}) \longrightarrow \overline{W}^{i}(\mathbb{A}^{n}_{f}) \longrightarrow \cdots$$

Since $f = 1 + X_1^2 + \dots + X_n^2$ is a regular element, by dévissage we have

$$\overline{\mathrm{W}}^{i}_{(f)}(\mathbb{A}^{n})\simeq\overline{\mathrm{W}}^{i}(C^{n}).$$

Because of Proposition 3.1, the latter is zero. Now we use homotopy invariance of coherent Witt groups to conclude. \Box

Lemma 3.6. There are split short exact sequences

$$0 \longrightarrow \overline{W}^{i}_{(1-X_{n+1})}(S^{n}) \longrightarrow \overline{W}^{i}(S^{n}) \longrightarrow \overline{W}^{i}(A) \longrightarrow 0.$$

Proof. Consider the long exact sequence associated with the localization $S^n \to S_{1-X_{n+1}}^n$:

$$\cdots \longrightarrow \overline{W}^{i}_{(1-X_{n+1})}(S^{n}) \longrightarrow \overline{W}^{i}(S^{n}) \longrightarrow \overline{W}^{i}(S^{n}_{1-X_{n+1}}) \longrightarrow \overline{W}^{i+1}_{(1-X_{n+1})}(S^{n}) \longrightarrow \cdots,$$

and consider the projection $q: \operatorname{Spec} S^n \to \operatorname{Spec} A$. We then have a commutative diagram

Spec
$$S^n \xleftarrow{i}$$
 Spec $S^n_{1-X_{n+1}}$
 q
 $\downarrow p$
Spec A

where *i* is the inclusion. Using Lemma 3.5 and the fact that Spec $S_{1-X_{n+1}}^n \simeq \mathbb{A}_f^n$ (Lemma 3.4), we obtain a commutative diagram

$$\overline{W}^{i}(S^{n}) \xrightarrow{i^{*}} \overline{W}^{i}(\mathbb{A}_{f}^{n})$$

$$q^{*} \qquad p^{*} \stackrel{h}{\simeq}$$

$$\overline{W}^{i}(A)$$

The above long exact sequence yields finally the split sequences

$$0 \longrightarrow \overline{W}^{i}_{(1-X_{n+1})}(S^{n}) \longrightarrow \overline{W}^{i}(S^{n}) \longrightarrow \overline{W}^{i}(A) \longrightarrow 0. \quad \Box$$

Corollary 3.7. For any *i*, we have $\overline{W}^i(S^n) \simeq \overline{W}^i(A) \oplus \overline{W}^i_{(1-X_{n+1})}(S^n)$.

Next we compute $\overline{W}'_{(1-X_{n+1})}(S^n)$. In order to do this, we introduce another notation:

Notation.

$$B^{n} = B^{n}_{A} := \frac{A[X_{1}, \dots, X_{n}]}{(X^{2}_{1} + \dots + X^{2}_{n})}$$

Thus we have isomorphisms $S^n/(1 - X_{n+1}) \simeq B^n$. For $n \ge 1$, the element $1 - X_{n+1} \in S_n$ is regular and we can use dévissage to obtain:

$$\tilde{\mathbf{W}}^{i}_{(1-X_{n+1})}(S^{n}) \simeq \tilde{\mathbf{W}}^{i-1}(B^{n}).$$
(3)

Notice *en passant* that the rings B^n are singular. This makes the use of coherent (rather that derived) Witt groups necessary for our calculation, even when A is regular.

Lemma 3.8. For $n \ge 1$ and any *i*, we have $\overline{W}^i(B^n) \simeq \overline{W}^{i-n+1}(A)$.

Proof. We will exploit the recursive property $B^n/(X_n) \simeq B^{n-1}$. Consider the long exact sequence

$$\cdots \longrightarrow \tilde{W}^{i}_{(X_{n})}(B^{n}) \longrightarrow \tilde{W}^{i}(B^{n}) \longrightarrow \tilde{W}^{n}(B^{n}_{X_{n}}) \longrightarrow \cdots$$

associated with the localization $B^n \to B^n_{X_n}$. Notice that $B^n_{X_n} \simeq C^{n-1}[X_n, X_n^{-1}]$. It is a result of Gille that $\tilde{W}^i(R[T, T^{-1}]) \simeq \tilde{W}^i(R) \oplus \tilde{W}^i(R)$ for R a finite dimensional Gorenstein ring (see [5, Thm. 5.6]). Thus we have

$$\overline{\mathbf{W}}^{i}(B_{X_{n}}^{n})\simeq \overline{\mathbf{W}}^{i}(C^{n-1})\oplus \overline{\mathbf{W}}^{i}(C^{n-1})=0,$$

where the vanishing is due to Proposition 3.1. For $n \ge 2$, the element $X_n \in B^n$ is regular, so dévissage yields

$$\tilde{W}^{i}_{(X_n)}(B^n) \simeq \tilde{W}^{i-1}(B^n/X_n) = \tilde{W}^{i-1}(B^{n-1}).$$

Altogether, we obtain the formula $\overline{W}^{i}(B^{n}) \simeq \overline{W}^{i-1}(B^{n-1})$ $(n \ge 2)$. We finish the proof by remarking that $\tilde{W}^{j}(B^{1}) \simeq \tilde{W}^{j}(A)$ for all j. (For example, one can use the generalization of affine dévissage to zero dimensional ideals, see [6, Thm. 3.5]: $\tilde{W}^{j}(A[X]/X^{2}) = \tilde{W}^{j}_{(X)}(A[X]/X^{2}) \simeq \tilde{W}^{j}((A[X]/X^{2})/X) = \tilde{W}^{j}(A)$.)

Finally, we have $\overline{W}^{i}(S^{n}) \simeq \overline{W}^{i}(A) \oplus \overline{W}^{i}_{1-X_{n+1}}(S^{n})$ by Corollary 3.7 and $\overline{W}^{i}_{1-X_{n+1}}(S^{n}) \simeq \overline{W}^{i-n}(A)$ by Eq. (3) and the last lemma. Together with Lemma 3.3, this ends the proof of Theorem 1.1.

4. Proof of Theorem 1.2

From now on, the base A and thus also S_A^n will be assumed to be regular rings. We will still denote by $q: \operatorname{Spec} S^n \to \operatorname{Spec} A$ the structure morphism.

For any ring *R*, we will denote by $e_R \in W^0(R)$ the multiplicative unit of $W^{tot}(R)$; this is just the diagonal form $\langle 1 \rangle = [id : R \rightarrow R]$ (we make the usual identification $R = R^{\vee}$). In this proof we will also abbreviate

$$P := S^n / (X_1, \dots, X_n)$$

$$\mathfrak{n} := (X_{n+1} - 1) \qquad \mathfrak{s} := (X_{n+1} + 1),$$

so that $P/\mathfrak{n} \simeq A$ and $P/\mathfrak{s} \simeq A$ are the North Pole and the South Pole of the sphere. Write i_P , i_N and i_S for the corresponding closed immersions. We will further write

$$\alpha_N := i_{N*}(e_{P/\mathfrak{n}}) \in \mathbf{W}^n(S^n), \qquad \alpha_S := i_{S*}(e_{P/\mathfrak{s}}) \in \mathbf{W}^n(S^n),$$

and we will keep the same notation for the images in $\overline{W}^n(S^n)$ of these forms.

The next lemma is just a corollary of the proof of Theorem 1.1.

Lemma 4.1.

$$\overline{W}^{tot}(S^n) = \overline{W}^{tot}(A) \cdot e_{S^n} \oplus \overline{W}^{tot}(A) \cdot \alpha_N.$$

Proof. From the proof of Lemma 3.6 we see that $q^* : \overline{W}^{\text{tot}}(A) \to \overline{W}^{\text{tot}}(S^n)$ is injective. Since $q^*(e_A) = e_{S^n}$, we recognize the first direct summand. By the proof of Lemma 3.8 and functoriality of the transfer (see Section 2 above), we see that the other summand is the image of $i_{N*} : \overline{W}^{\text{tot}}(P/\mathfrak{n}) \to \overline{W}^{\text{tot}}(S^n)$. This image is $\overline{W}^{\text{tot}}(A) \cdot \alpha_N$ by the following lemma. \Box

Lemma 4.2. Let i: Spec $A \hookrightarrow$ Spec S^n be the closed immersion corresponding either to the North or the South pole, and let $i_* : W^j(A) \to W^{j+n}(S^n)$ be the induced transfer morphism. Then for every form $\beta \in W^j(A)$:

$$i_*(\beta) = q^*(\beta) \star i_*(e_A) \in \mathbf{W}^{J+n}(S^n).$$

Proof. This follows from the projection formula for coherent Witt groups (Gille [7, Thm. 5.2]), applied to the finite morphism *i*:

$$i_*(\beta) = i_*(\underbrace{i^*q^*}_{\text{id}}(\beta) \star e_A) = q^*(\beta) \star i_*(e_A). \quad \Box$$

Proposition 4.3. The relation $\alpha_N = -\alpha_S$ holds in $W^n(S^n)$.

As an immediate consequence of this, the form $\alpha_N^2 = -\alpha_N \star \alpha_S$ is supported on the intersection of the North and the South Poles, which is empty: Spec $P/\mathfrak{n} \cap \text{Spec } P/\mathfrak{s} = \emptyset$; so it is trivially equal to zero.

To prove Proposition 4.3, we first recall straight from [7, Section 9] some facts about forms on Koszul complexes. For any ring *R* and any regular sequence (x_1, \ldots, x_n) in *R*, we will denote by $K_{\bullet}(x_1, \ldots, x_n)$ the Koszul complex for this sequence, and we set it in (homological) degrees from *n* to 0. (Below we will specialize to the ring S^n and the regular sequence (X_1, \ldots, X_n) in it.) For $1 \le i \le n$ and any unit $r \in R^{\times}$, the complex $K_{\bullet}(x_i)$ can be equipped by the following symmetric 1-form:

For any choice of *n* units in *R*, the product $(K_{\bullet}(x_1), \ell_{r_1}) \star \cdots \star (K_{\bullet}(x_n), \ell_{r_n})$ is a symmetric *n*-space on the complex $K_{\bullet}(x_1, \ldots, x_n) \simeq K_{\bullet}(x_1) \otimes \cdots \otimes K_{\bullet}(x_n)$. We denote its form by $\ell_{r_1 \cdots r_n}$.

By displaying an explicit Lagrangian, it is easy to see that $[K_{\bullet}(x_i), \ell_{r_i}] = 0 \in W^n(R)$, and therefore $[K_{\bullet}(x_1, \ldots, x_n), \ell_{r_1 \cdots r_n}] = 0 \in W^n(R)$ for all symmetric spaces as above.

Lemma 4.4. If $\phi : K_{\bullet}(x_1, \ldots, x_n) \to \text{Hom}_R(K_{\bullet}(x_1, \ldots, x_n), R)[n]$ is a quasi-isomorphism of complexes, then there exists a unit $r \in R^{\times}$ such that $\ell_{r-1\cdots 1}$ is chain homotopic to ϕ .

Proof. This is a slight generalization of [7, Lemma 9.1]. The same proof goes through. \Box

We have an isomorphism $W^0(P) \simeq W^0(P/\mathfrak{n}) \oplus W^0(P/\mathfrak{s})$, induced by $P \simeq P/\mathfrak{n} \times P/\mathfrak{s}$, which identifies e_P with (e_N, e_S) . Under this isomorphism, the transfer $i_{P*} : W^0(P) \to W^n(S^n)$ identifies with (i_{N*}, i_{S*}) , and in particular

$$\alpha_N + \alpha_S = i_{N*}(e_N) + i_{S*}(e_S) = i_{P*}(e_P).$$

But the last term is zero in $W^n(S^n)$. In fact, $i_{P*}(e_P)$ can be represented by (F_{\bullet}, ψ) , where F_{\bullet} is a projective resolution of the S^n -module $P = S^n/(X_1, \ldots, X_n)$, and where ψ is a symmetric quasi-isomorphism between F_{\bullet} and its *n*-shifted dual, lying above the morphism id : $A \to A$. Since (X_1, \ldots, X_n) is a regular sequence in S^n , we can take F_{\bullet} to be the Koszul complex for this sequence. By the above lemma (or by direct inspection) we have $i_{A*}(e_A) = [K_{\bullet}(X_1, \ldots, X_n), \ell_1] = 0 \in W^n(S^n)$.

This ends the proof of our second theorem.

1044

Acknowledgements

The authors sincerely thank Paul Balmer, Stefan Gille and Burt Totaro for their careful reading and useful comments.

References

- [1] Paul Balmer, Witt groups, in: Handbook of K-Theory, vol. 2, Springer, Berlin, 2005, pp. 539–576.
- [2] P. Balmer, C. Walter, A Gersten-Witt spectral sequence for regular schemes, Ann. Sci. École Norm. Sup. (4) 35 (1) (2002) 127–152.
- [3] G.W. Brumfiel, Witt rings and K-theory, Rocky Mountain J. Math. 14 (4) (1984) 733–765.
- [4] G.W. Brumfiel, The real spectrum of an ideal and KO-theory exact sequences, K-Theory 1 (3) (1987) 211–235.
- [5] Stefan Gille, On Witt groups with support, Math. Ann. 322 (1) (2002) 103–137.
- [6] Stefan Gille, Homotopy invariance of coherent Witt groups, Math. Z. 244 (2003) 211–233.
- [7] Stefan Gille, A transfer morphism for Witt groups, J. Reine Angew. Math. 564 (2003) 215–233.
- [8] Stefan Gille, The general dévissage theorem for Witt groups of schemes, Arch. Math. 88 (2007) 333-343.
- [9] S. Gille, A. Nenashev, Pairings in triangular Witt theory, J. Algebra 261 (2) (2003) 292–309.
- [10] J. Hornbostel, M. Schlichting, Localization in Hermitian K-theory of rings, J. London Math. Soc. (2) 70 (1) (2004) 77–124.
- [11] Tsit-Yuen Lam, Introduction to quadratic forms over fields, in: Graduate Studies in Math., vol. 67, American Math. Soc., Providence, 2005.